SOLUTION: 3ln(2x^2)=12

Algebra ->  Exponential-and-logarithmic-functions -> SOLUTION: 3ln(2x^2)=12      Log On


   



Question 394126: 3ln(2x^2)=12
Answer by CharlesG2(834) About Me  (Show Source):
You can put this solution on YOUR website!
3ln(2x^2)=12

3ln(2x^2) = 12
ln(2x^2) = 4
logarithmic rule: if ln(y)=x, then e^x=y, ln's base is e
e^4 = 2x^2
e^4/2 = x^2
+- e^2/(sqrt(2)) = +- sqrt(2)e^2/2 = x
check:
logarithmic rule: nln(m)=ln(m^n)
3ln(2x^2) = 3ln(e^4) = 12ln(e) = 12 * 1 = 12, yes