SOLUTION: Determine if the statement is true or false. If statement is false, make the necessary change(s) to produce a true statement.
If f (x) = 2^x then f(a+b)= f(a)+f(b)
Algebra ->
Exponential-and-logarithmic-functions
-> SOLUTION: Determine if the statement is true or false. If statement is false, make the necessary change(s) to produce a true statement.
If f (x) = 2^x then f(a+b)= f(a)+f(b)
Log On
Question 1188809: Determine if the statement is true or false. If statement is false, make the necessary change(s) to produce a true statement.
If f (x) = 2^x then f(a+b)= f(a)+f(b) Found 2 solutions by Alan3354, ikleyn:Answer by Alan3354(69443) (Show Source):
You can put this solution on YOUR website! Determine if the statement is true or false. If statement is false, make the necessary change(s) to produce a true statement.
If f (x) = 2^x then f(a+b)= f(a)+f(b)
=========================
f(a) = 2^a
f(b) = 2^b
----
f(a+b) = 2^a + 2^b
==================
Sub a+b for x:
f(a+b) = 2^(a+b)
Therefore, it is false.
The statement is FALSE.
To check that it is false, calculate f(a+b) and f(a) + f(b) at these values a= 1, b= 2.
The correct statement is
f(a+b) = f(a)*f(b).
Check it on your own.