SOLUTION: If u = log ( e^x + e^y ) , then ∂u/∂x + ∂u/∂y = ? A ) e^x + e^y. B ) e^x - e^y. C ) 1/ (e^x +e^y). D) 1
Algebra
->
Exponential-and-logarithmic-functions
-> SOLUTION: If u = log ( e^x + e^y ) , then ∂u/∂x + ∂u/∂y = ? A ) e^x + e^y. B ) e^x - e^y. C ) 1/ (e^x +e^y). D) 1
Log On
Algebra: Exponent and logarithm as functions of power
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Exponential-and-logarithmic-functions
Question 1015834
:
If u = log ( e^x + e^y ) , then ∂u/∂x + ∂u/∂y = ?
A ) e^x + e^y.
B ) e^x - e^y.
C ) 1/ (e^x +e^y).
D) 1
Answer by
Fombitz(32388)
(
Show Source
):
You can
put this solution on YOUR website!
∂u/∂x=
.
.
∂u/∂y=
So then adding them together,
∂u/∂x+∂u/∂y=