SOLUTION: Identify the focus, directrix,and axis of symmetry of x=2y^2

Algebra ->  Coordinate-system -> SOLUTION: Identify the focus, directrix,and axis of symmetry of x=2y^2      Log On


   



Question 953503: Identify the focus, directrix,and axis of symmetry of x=2y^2
Answer by josgarithmetic(39620) About Me  (Show Source):
You can put this solution on YOUR website!
Focus is unknown (p,0) and directrix is unknown (-p,y).
Your given equation has symmetry axis y=0. You know this because of understanding the form given. The vertex is (0,0) because of understanding the form given.

Use Distance Formula and the definition of a parabola, and compare the resulting terms after simplification. Here is the start of the set-up:

Parabola is some set of points (x,y) so that
sqrt%28%28x-p%29%5E2%2B%28y-0%29%5E2%29=sqrt%28%28x-%28-p%29%29%5E2%2B%28y-y%29%5E2%29;
Completely simplify this and put into the equation of x in terms of y. The work is up to you from this set-up.