Lesson Logic Rules of Inference and Replacement
Algebra
->
Conjunction
-> Lesson Logic Rules of Inference and Replacement
Log On
Logic: Propositions, Conjunction, Disjunction, Implication
Logic
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Source code of 'Logic Rules of Inference and Replacement'
This Lesson (Logic Rules of Inference and Replacement)
was created by by
math_tutor2020(3816)
:
View Source
,
Show
About math_tutor2020
:
Middle school, high school, and college math tutor
<font color=black size=3> This is a reference page about the Rules of Inference and Replacement. The explanation of each rule is omitted. A similar reference sheet should be found in the back of your logic textbook. <font size=4>Rules of Inference</font> <table border = "1" cellpadding = "5"><tr><td>1. Modus Ponens</br>p --> q</br>p</br>:. q</td><td>2. Modus Tollens</br>p --> q</br>~q</br>:. ~p</td><td>3. Hypothetical Syllogism</br>p --> q</br>q --> r</br>:. p --> r</td></tr><tr><td>4. Disjunctive Syllogism</br>p v q</br>~p</br>:. q</td><td>5. Conjunction</br>p</br>q</br>:. p & q</td><td>6. Constructive Dilemma</br>(p --> q) & (r --> s)</br>p v r</br>:. q v s</td></tr><tr><td>7. Simplification</br>p & q</br>:. p</td><td>8. Absorption</br>p --> q</br>:. p --> (p & q)</td><td>9. Addition</br>p</br>:. p v q</td></tr></table> <font size=4>Rules of Replacement</font> <table border = "1" cellpadding = "5"><tr><td>10. De Morgan's Theorems</br><font color=red>~(p & q)</font> = <font color=blue>~p v ~q</font></br><font color=red>~(p v q)</font> = <font color=blue>~p & ~q</font></td><td>11. Commutation</br><font color=red>p v q</font> = <font color=blue>q v p</font></br><font color=red>p & q</font> = <font color=blue>q & p</font></td><td>12. Association</br><font color=red>p v (q v r)</font> = <font color=blue>(p v q) v r</font></br><font color=red>p & (q & r)</font> = <font color=blue>(p & q) & r</font></td></tr><tr><td>13. Distribution</br><font color=red>p & (q v r)</font> = <font color=blue>(p & q) v (p & r)</font></br><font color=red>p v (q & r)</font> = <font color=blue>(p v q) & (p v r)</font></td><td>14. Double Negation</br><font color=red>p</font> = <font color=blue>~(~p)</font></td><td>15. Transposition</br><font color=red>p --> q</font> = <font color=blue>~q --> ~p</font></td></tr><tr><td>16. Material Implication</br><font color=red>p --> q</font> = <font color=blue>~p v q</font></td><td>17. Material Equivalence</br><font color=red>p <--> q</font> = <font color=blue>(p --> q) & (q --> p)</font></br><font color=red>p <--> q</font> = <font color=blue>(p & q) v (~p & ~q)</font></td><td>18. Exportation</br><font color=red>(p & q) --> r</font> = <font color=blue>p --> (q --> r)</font></td></tr><tr><td>19. Tautology</br><font color=red>p</font> = <font color=blue>p & p</font></br><font color=red>p</font> = <font color=blue>p v p</font></td><td></td><td></td></tr></table> For any given line, a logical expression marked in <font color=red>red</font> is the same as the logical expression marked in <font color=blue>blue</font>. For instance, <font color=red>~(p & q)</font> is the same as <font color=blue>~p v ~q</font> due to De Morgan's Theorem. There are 19 rules in total. 9 rules of inference and 10 rules of replacement. The order of the rules shown doesn't matter. A rule of inference MUST be used on a <u>whole line</u> only. In contrast, a rule of replacement can be used for a portion of a line. The rules of inference must flow in the direction shown above. Example: We can go from p --> q to p --> (p & q) because of the absorption rule. However we cannot go from p --> (p & q) back to p --> q For any rule of replacement, we can flow in either direction from <font color=red>red</font> to <font color=blue>blue</font>, or vice versa. Related Topic <a href="https://www.algebra.com/algebra/homework/Conjunction/truth-table1.lesson">Truth Tables</a> </font>