SOLUTION: Use an ordinary truth table to answer the following problems. Construct the truth table as per the instructions in the textbook.
Given the argument:
S ⊃ (K ∨
Algebra ->
Conjunction
-> SOLUTION: Use an ordinary truth table to answer the following problems. Construct the truth table as per the instructions in the textbook.
Given the argument:
S ⊃ (K ∨
Log On
Question 915332: Use an ordinary truth table to answer the following problems. Construct the truth table as per the instructions in the textbook.
Given the argument:
S ⊃ (K ∨ ∼ S) / K ⊃ S // S ≡ K
This argument is:
a. Invalid; fails in 2nd line.
b. Invalid; fails in 3rd line.
c. Invalid; fails in 1st line.
d. Valid.
e. Invalid; fails in 4th line. Found 2 solutions by Edwin McCravy, AnlytcPhil:Answer by Edwin McCravy(20054) (Show Source):
There was a slight mistake before. The argument is valid. Here is the corrected version.
I do truth tables different, but it's the same way. I begin
by rewriting the argument with T's and F's under the S's and K's:
ORIGINAL TRUTH TABLE
S ⊃ (K ∨ ∼ S) / K ⊃ S // S ≡ K
-------------------------------
T ⊃ (T ∨ ∼ T) / T ⊃ T // T ≡ T
T ⊃ (F ∨ ∼ T) / F ⊃ T // T ≡ F
F ⊃ (T ∨ ∼ F) / T ⊃ F // F ≡ T
F ⊃ (F ∨ ∼ F) / F ⊃ F // F ≡ F
Then I place the truth values under the symbols ∼, ⊃ and ≡
S ⊃ (K ∨ ∼ S) / K ⊃ S // S ≡ K
-------------------------------
T ⊃ (T ∨ F T) / T T T // T T T
T ⊃ (F ∨ F T) / F T T // T F F
F ⊃ (T ∨ T F) / T F F // F F T
F ⊃ (F ∨ T F) / F T F // F T F
Then I erase all the used truth values:
S ⊃ (K ∨ ∼ S) / K ⊃ S // S ≡ K
-------------------------------
T ⊃ (T ∨ F ) / T // T
T ⊃ (F ∨ F ) / T // F
F ⊃ (T ∨ T ) / F // F
F ⊃ (F ∨ T ) / T // T
Place truth values under symbol ∨:
S ⊃ (K ∨ ∼ S) / K ⊃ S // S ≡ K
-------------------------------
T ⊃ (T T F ) / T // T
T ⊃ (F F F ) / T // F
F ⊃ (T T T ) / F // F
F ⊃ (F T T ) / T // T
Erase used truth values:
S ⊃ (K ∨ ∼ S) / K ⊃ S // S ≡ K
-------------------------------
T ⊃ T / T // T
T ⊃ F / T // F
F ⊃ T / F // F
F ⊃ T / T // T
Place truth values under ⊃
S ⊃ (K ∨ ∼ S) / K ⊃ S // S ≡ K
-------------------------------
T T T / T // T
T F F / T // F
F T T / F // F
F T T / T // T
Erase used truth values:
S ⊃ (K ∨ ∼ S) / K ⊃ S // S ≡ K
-------------------------------
T / T // T
F / T // F
T / F // F
T / T // T
Place truth values under /, which is the same same
as ∧ (and, conjunction)
S ⊃ (K ∨ ∼ S) / K ⊃ S // S ≡ K
-------------------------------
T T T // T
F F T // F
T F F // F
T T T // T
Erase the used truth values
S ⊃ (K ∨ ∼ S) / K ⊃ S // S ≡ K
-------------------------------
T T
F F
F F
T T
Place truth values under the // which is the same as ⊃
S ⊃ (K ∨ ∼ S) / K ⊃ S // S ≡ K
-------------------------------
T T T
F T F
F T F
T T T
Valid. There are only T's under the //
Edwin