SOLUTION: a) Translate the argument into symbolic form and (b) determine if the argument is valid or invalid. You may compare the argument to a standard form or use a truth table. If Li

Algebra ->  Conjunction -> SOLUTION: a) Translate the argument into symbolic form and (b) determine if the argument is valid or invalid. You may compare the argument to a standard form or use a truth table. If Li      Log On


   



Question 148558: a) Translate the argument into symbolic form and (b) determine if the argument is valid or invalid. You may compare the argument to a standard form or use a truth table.
If Lillian passes the bar exam, then she will practice law.
Lillian will not practice law
----------------------------------------------------------------------
 Lillian did not pass the bar exam

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
If Lillian passes the bar exam, then she will practice law.
Lillian will not practice law
----------------------------------------------------------------------
Lillian did not pass the bar exam
-------------------------------------------------
Let "Lillian passes... " be p
Let "she will practise..." be q
-----------------------------------
Argument:
[If p then q and (not q)] then (not p)
....T..T...T...F....F.......T......F
....T..F...F...F....T.......T......F
....F..T...T...F....F.......T......T
....F..T...F...T....T.......T......T
The statement is valid under all p,q conditions.
=============
Cheers,
Stan H.