given: kite MATH, m∠M=135°, m∠T=53° to find: m∠MAT (same as ∠M before we drew the green diagonal below) m(MA) = m(MH) ΔMAH is isosceles m∠MAH = m∠MHA m∠M+m∠MAH+m∠MHA = 180° m∠M = 135° 135°+m∠MAH+m∠MHA = 180° m∠MAH+m∠MHA = 180°-135° m∠MAH+m∠MAH = 45° 2m∠MAH = 45° m∠MHA = 22.5° -------------- m(TA) = m(TH) ΔTA is isosceles m∠TAH = m∠THA m∠T+m∠TAH+m∠THA = 180° m∠T = 53° 53°+m∠TAH+m∠THA = 180° m∠TAH+m∠THA = 180°-53° m∠TAH+m∠TAH = 127° 2m∠TAH = 127° m∠TAH = 63.5° ---------------------------- ∠MAT = m∠MAH+m∠TAH = 22.5°+63.5° = 86° Edwin
given: kite MATH, m∠M=135°, m∠T=53° to find: m∠MAT (same as ∠M before we drew the green diagonal below) m(MA) = m(MH) ΔMAH is isosceles m∠MAH = m∠MHA m∠M+m∠MAH+m∠MHA = 180° m∠M = 135° 135°+m∠MAH+m∠MHA = 180° m∠MAH+m∠MHA = 180°-135° m∠MAH+m∠MAH = 45° 2m∠MAH = 45° m∠MHA = 22.5° -------------- m(TA) = m(TH) ΔTA is isosceles m∠TAH = m∠THA m∠T+m∠TAH+m∠THA = 180° m∠T = 53° 53°+m∠TAH+m∠THA = 180° m∠TAH+m∠THA = 180°-53° m∠TAH+m∠TAH = 127° 2m∠TAH = 127° m∠TAH = 63.5° ---------------------------- ∠MAT = m∠MAH+m∠TAH = 22.5°+63.5° = 86° Edwin