SOLUTION: If cos (2 theta)= 120/169, find cos, sin, and tan

Algebra ->  Trigonometry-basics -> SOLUTION: If cos (2 theta)= 120/169, find cos, sin, and tan      Log On


   



Question 864490: If cos (2 theta)= 120/169, find cos, sin, and tan
Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
If cos (2 theta)= 120/169, find cos, sin, and tan
------
cos(2t) = cos^2t-sin^2(t) = cos^2(t)+cos^2(t)-1 = 2cos^2(t)-1
-----
Equation:
2cos^2(t)-1 = 120/169
2cos^2(t) = (120+169)/169
cos^2(t) = (289)/(338)
cos(t) = sqrt(289)/sqrt(338)
======
cos(2t) = 1-2sin^2(t) = 120/169
2sin^2(t) = 49/169
sin^2(t) = 49/338
sin(t) = 7/sqrt(338)
------
tan(t) = sin(t)/cos(t) = 7/sqrt(289)
-----------------------------------------
Cheers,
Stan H.
---------------------