You can put this solution on YOUR website! Prove as an identity;
((sin(2x)) / (sin(x))) - ((cos(2x)) / (cos(x))) = sec(x)
***
Start with LHS
((sin(2x)) / (sin(x))) - ((cos(2x)) / (cos(x)))
(2sinxcosx)/(sinx)-(cos^2x/cosx)
(2cosx)-(cos^2x-sin^x)/cosx)
(2cosx)-(cos^2x-(1-cos^2^x)/cosx)
(2cosx)-(-1+2cos^2x)/cosx)
(2cosx)+(1-2cos^2x)/cosx)
(2cosx)+(1/cos-2cosx)
1/cosx=secx
verified:LHS=RHS