A familiar identity is tan = , and
since the cotangent is the reciprocal of the tangent, we have
cot = , so we will try to make
the left side into that expression. So we will multiply the left side
by , so hopefully it will have the desired denominator in the end.
1 + sin(x) + cos(x)
——————————————————— = cot()
1 + sin(x) - cos(x)
[1 + sin(x) + cos(x)] [1 - cos(x)]
————————————————————— · ————————————
[1 + sin(x) - cos(x)] [1 - cos(x)]
1 - cos(x) + sin(x) - sin(x)cos(x) + cos(x) - cos²(x)
—————————————————————————————————————————————————————
[1 + sin(x) - cos(x)][1 - cos(x)]
1 - cos(x) + sin(x) - sin(x)cos(x) + cos(x) - cos²(x)
—————————————————————————————————————————————————————
[1 + sin(x) - cos(x)][1 - cos(x)]
1 + sin(x) - sin(x)cos(x) - cos²(x)
———————————————————————————————————
[1 + sin(x) - cos(x)][1 - cos(x)]
Rearrange the terms
1 - cos²(x) + sin(x) - sin(x)cos(x)
—————————————————————————————————————
[1 + sin(x) - cos(x)][1 - cos(x)]
[1 - cos²(x)] + sin(x) - sin(x)cos(x)
—————————————————————————————————————
[1 + sin(x) - cos(x)][1 - cos(x)]
Use the identity sin²(x) = 1 - cos²(x)
sin²(x) + sin(x) - sin(x)cos(x)
—————————————————————————————————
[1 + sin(x) - cos(x)][1 - cos(x)]
Factor out sin(x) on the top:
sin(x)[sin(x) + 1 - cos(x)]
—————————————————————————————————
[1 + sin(x) - cos(x)][1 - cos(x)]
Then we can cancel:
sin(x)[sin(x) + 1 - cos(x)]
—————————————————————————————————
[1 + sin(x) - cos(x)][1 - cos(x)]
sin(x)
——————————
1 - cos(x)
which is the identity we showed above for cot()
cot
Edwin