SOLUTION: show that sum of (xi-a)^2=sum of (xi-x bar)^2+n(x bar -a)^2
Algebra
->
Probability-and-statistics
-> SOLUTION: show that sum of (xi-a)^2=sum of (xi-x bar)^2+n(x bar -a)^2
Log On
Algebra: Probability and statistics
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Probability-and-statistics
Question 1121817
:
show that sum of (xi-a)^2=sum of (xi-x bar)^2+n(x bar -a)^2
Answer by
Alex.33(110)
(
Show Source
):
You can
put this solution on YOUR website!
x bar=X.
3.SUM[(xi-a)^2]=SUM[xi^2]+na^2-2a*(SUM[xi])=SUM[xi^2]+na^2-2anX
1.SUM[(xi-X)^2]=SUM[xi^2]+nX^2-2X*SUM[xi]=SUM[xi^2]+nX^2-2nX^2=SUM[xi^2]-nX^2
2.n(X-a)^2=nX^2+na^2-2anX.
1+2=3. Done.