SOLUTION: solve the equation: 3x^3 - 26x^2 + 33x +14 = 0 given 2=0 of f(x) = 3x^3 - 26x^2 + 33x + 14

Algebra ->  Polynomials-and-rational-expressions -> SOLUTION: solve the equation: 3x^3 - 26x^2 + 33x +14 = 0 given 2=0 of f(x) = 3x^3 - 26x^2 + 33x + 14      Log On


   



Question 286631: solve the equation: 3x^3 - 26x^2 + 33x +14 = 0
given 2=0 of f(x) = 3x^3 - 26x^2 + 33x + 14

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
solve the equation: 3x^3 - 26x^2 + 33x +14 = 0
--------------------------
I graphed the equation and found a zero at x = 2.
---
Use synthetic division to find the other zeroes:
2)....3....-26....33....14
......3....-20....-7...|..0
----
Quotient: 3x^2-20x-7 = 0
Factor:
3x^2-21x+x-7 = 0
3x(x-7) + (x-7) = 0
(x-7)(3x+1) = 0
-----
All zeroes: x = 2 or x = 7 or x = -1/3
===========================================
Cheers,
stan H.