SOLUTION: The Paperback Trader is a book store that takes in used paperbacks for 20% of their cover price and sells them for 50% of their cover price. Pat brings in a stack of 13 paperback b

Algebra ->  Customizable Word Problem Solvers  -> Misc -> SOLUTION: The Paperback Trader is a book store that takes in used paperbacks for 20% of their cover price and sells them for 50% of their cover price. Pat brings in a stack of 13 paperback b      Log On

Ad: Over 600 Algebra Word Problems at edhelper.com


   



Question 133754: The Paperback Trader is a book store that takes in used paperbacks for 20% of their cover price and sells them for 50% of their cover price. Pat brings in a stack of 13 paperback books to trade and gets $13.72 credit. Some of the books had a cover price of $5.97, the rest $4.97. She wants to get some Tom Clancy books having a cover price of $5.97. How many $5.97 books did she bring in and how many Clancy books can she get without paying any additional cash?


Answer by ankor@dixie-net.com(22740) About Me  (Show Source):
You can put this solution on YOUR website!
The Paperback Trader is a book store that takes in used paperbacks for 20% of their cover price and sells them for 50% of their cover price. Pat brings in a stack of 13 paperback books to trade and gets $13.72 credit. Some of the books had a cover price of $5.97, the rest $4.97. She wants to get some Tom Clancy books having a cover price of $5.97. How many $5.97 books did she bring in and how many Clancy books can she get without paying any additional cash?
:
let x = no. of 5.97 books brought in
then
(13-x) = no. of 4.97 books brought in
:
Price of 5.97 books brought in: .2 * 5.97 = $1.194
Price of 4.97 books brought in: .2 * 4.97 = $.994
:
An equation from this information:
1.194x + .994(13-x) = 13.72
1.194x + 12.922 - .994x = 13.72
1.194 - .994x = 13.72 - 12.922
.2x = .798
x = .798/.2
x = 3.99 ~ 4 ea 5.97 books, she brought in
:
Price of 5.97 books sold: .5 * 5.87 = $2.985
No of 5.97 books: 13.72%2F2.985 = 4.6 ~ 4 books can be bought without additional $