SOLUTION: Verify the identity using Aultiple-Angle Trigonometric formulas. 1a) cos^(4)x-sin^(4)x=cos2x 1b) tanθ+cotθ=2csc2θ
Algebra
->
Geometry-proofs
-> SOLUTION: Verify the identity using Aultiple-Angle Trigonometric formulas. 1a) cos^(4)x-sin^(4)x=cos2x 1b) tanθ+cotθ=2csc2θ
Log On
Geometry: Proofs in Geometry
Geometry
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Geometry proofs
Question 148912
:
Verify the identity using Aultiple-Angle Trigonometric formulas.
1a) cos^(4)x-sin^(4)x=cos2x
1b) tanθ+cotθ=2csc2θ
Answer by
Nate(3500)
(
Show Source
):
You can
put this solution on YOUR website!
cos^4(x) - sin^4(x) = cos(2x)
cos^4(x) - sin^4(x) = 2cos^2(x) - 1
( cos^2(x) + sin^2(x) )( cos^2(x) - sin^2(x) ) = 2cos^2(x) - 1
( cos^2(x) + 1 - cos^2(x) )( cos^2(x) - ( 1 - cos^2(x) ) ) = 2cos^2(x) - 1
( 1 )( 2cos^2(x) - 1 ) = 2cos^2(x) - 1
~
tan(θ) + cot(θ) = 2csc(2θ)
tan(θ) + cot(θ) = 2/sin(2θ)
tan(θ) + cot(θ) = 1/sin(θ)cos(θ)
sin(θ)/cos(θ) + cos(θ)/sin(θ) = 1/sin(θ)cos(θ)
sin^2(θ)/cos(θ)sin(θ) + cos^2(θ)/sin(θ)cos(θ) = 1/sin(θ)cos(θ)
( sin^2(θ) + cos^2(θ) )/sin(θ)cos(θ) = 1/sin(θ)cos(θ)
1/sin(θ)cos(θ) = 1/sin(θ)cos(θ)