SOLUTION: If {{{(a+b)^(1/2)=(a-b)^(-1/2)}}}, which of the following must be true? a) b=0 b) a+b=1 c) a-b=1 d) a^2+b^2=1 e) a^2-b^2=1
Algebra
->
Exponents-negative-and-fractional
-> SOLUTION: If {{{(a+b)^(1/2)=(a-b)^(-1/2)}}}, which of the following must be true? a) b=0 b) a+b=1 c) a-b=1 d) a^2+b^2=1 e) a^2-b^2=1
Log On
Algebra: Negative and Fractional exponents
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Exponents-negative-and-fractional
Question 23389
:
If
, which of the following must be true?
a) b=0
b) a+b=1
c) a-b=1
d) a^2+b^2=1
e) a^2-b^2=1
Answer by
stanbon(75887)
(
Show Source
):
You can
put this solution on YOUR website!
sqrt(a+b) = 1/sqrt(a-b)
Multiply both sides by sqrt(b-a) to get:
sqrt(a^2-b^2)=1
Square both sides to get a^2-b^2=1
Cheers,
stan H.