SOLUTION: Multiple Choice: Match the reason with the proof given below.
Prove: If a*c = b*c and c ≠ 0, then a = b
1 a*c = b*c
2 a*c*(1/c) = b*c*(1/c)
3 a*[c*(1/c)] = b*[c*(1/
Algebra ->
Distributive-associative-commutative-properties
-> SOLUTION: Multiple Choice: Match the reason with the proof given below.
Prove: If a*c = b*c and c ≠ 0, then a = b
1 a*c = b*c
2 a*c*(1/c) = b*c*(1/c)
3 a*[c*(1/c)] = b*[c*(1/
Log On
Question 200294: Multiple Choice: Match the reason with the proof given below.
Prove: If a*c = b*c and c ≠ 0, then a = b
1 a*c = b*c
2 a*c*(1/c) = b*c*(1/c)
3 a*[c*(1/c)] = b*[c*(1/c)]
4 a*1 = b*1
5 a = b
9.Choose the reason for line 1 of the proof