SOLUTION: Note:
When I use the word "bar" after the complex number expressions, I simply mean there is a bar over each expression.
Given z = 3 - 4i and w = 8 + 3i, write each exp
You can put this solution on YOUR website! .
Given z = 3 - 4i and w = 8 + 3i, write each expression in the standard form
a + bi.
1. z • z bar
2. (z - w) bar
~~~~~~~~~~~~~~~~~~~~~~
(1) z • z bar = (3-4i)*(3+4i) = 3*3 - 4*3i + 4*3i - (4i)*(3i) = 9 - 16*i^2 = 9 - 16*(-1) = 9 + 16 = 25. ANSWERPost solution note : z* z bar is always real non-negative number (almost always real positive number).
(2) (z - w) = (3-4i) - (8+3i) = (3-8) + (-4i + 3i) = -5 - 7i.
Therefore (z - w) bar = (-5 - 7i) bar = -5 + 7i. ANSWER