Algebra ->  Tutoring on algebra.com -> See tutors' answers!      Log On

 Tutoring Home For Students Tools for Tutors Our Tutors Register Recently Solved
 By Tutor
| By Problem Number |

Tutor:

# Recent problems solved by 'jim_thompson5910'

Jump to solutions: 0..29 , 30..59 , 60..89 , 90..119 , 120..149 , 150..179 , 180..209 , 210..239 , 240..269 , 270..299 , 300..329 , 330..359 , 360..389 , 390..419 , 420..449 , 450..479 , 480..509 , 510..539 , 540..569 , 570..599 , 600..629 , 630..659 , 660..689 , 690..719 , 720..749 , 750..779 , 780..809 , 810..839 , 840..869 , 870..899 , 900..929 , 930..959 , 960..989 , 990..1019 , 1020..1049 , 1050..1079 , 1080..1109 , 1110..1139 , 1140..1169 , 1170..1199 , 1200..1229 , 1230..1259 , 1260..1289 , 1290..1319 , 1320..1349 , 1350..1379 , 1380..1409 , 1410..1439 , 1440..1469 , 1470..1499 , 1500..1529 , 1530..1559 , 1560..1589 , 1590..1619 , 1620..1649 , 1650..1679 , 1680..1709 , 1710..1739 , 1740..1769 , 1770..1799 , 1800..1829 , 1830..1859 , 1860..1889 , 1890..1919 , 1920..1949 , 1950..1979 , 1980..2009 , 2010..2039 , 2040..2069 , 2070..2099 , 2100..2129 , 2130..2159 , 2160..2189 , 2190..2219 , 2220..2249 , 2250..2279 , 2280..2309 , 2310..2339 , 2340..2369 , 2370..2399 , 2400..2429 , 2430..2459 , 2460..2489 , 2490..2519 , 2520..2549 , 2550..2579 , 2580..2609 , 2610..2639 , 2640..2669 , 2670..2699 , 2700..2729 , 2730..2759 , 2760..2789 , 2790..2819 , 2820..2849 , 2850..2879 , 2880..2909 , 2910..2939 , 2940..2969 , 2970..2999 , 3000..3029 , 3030..3059 , 3060..3089 , 3090..3119 , 3120..3149 , 3150..3179 , 3180..3209 , 3210..3239 , 3240..3269 , 3270..3299 , 3300..3329 , 3330..3359 , 3360..3389 , 3390..3419 , 3420..3449 , 3450..3479 , 3480..3509 , 3510..3539 , 3540..3569 , 3570..3599 , 3600..3629 , 3630..3659 , 3660..3689 , 3690..3719 , 3720..3749 , 3750..3779 , 3780..3809 , 3810..3839 , 3840..3869 , 3870..3899 , 3900..3929 , 3930..3959 , 3960..3989 , 3990..4019 , 4020..4049 , 4050..4079 , 4080..4109 , 4110..4139 , 4140..4169 , 4170..4199 , 4200..4229 , 4230..4259 , 4260..4289 , 4290..4319 , 4320..4349 , 4350..4379 , 4380..4409 , 4410..4439 , 4440..4469 , 4470..4499 , 4500..4529 , 4530..4559 , 4560..4589 , 4590..4619 , 4620..4649 , 4650..4679 , 4680..4709 , 4710..4739 , 4740..4769 , 4770..4799 , 4800..4829 , 4830..4859 , 4860..4889 , 4890..4919 , 4920..4949 , 4950..4979 , 4980..5009 , 5010..5039 , 5040..5069 , 5070..5099 , 5100..5129 , 5130..5159 , 5160..5189 , 5190..5219 , 5220..5249 , 5250..5279 , 5280..5309 , 5310..5339 , 5340..5369 , 5370..5399 , 5400..5429 , 5430..5459 , 5460..5489 , 5490..5519 , 5520..5549 , 5550..5579 , 5580..5609 , 5610..5639 , 5640..5669 , 5670..5699 , 5700..5729 , 5730..5759 , 5760..5789 , 5790..5819 , 5820..5849 , 5850..5879 , 5880..5909 , 5910..5939 , 5940..5969 , 5970..5999 , 6000..6029 , 6030..6059 , 6060..6089 , 6090..6119 , 6120..6149 , 6150..6179 , 6180..6209 , 6210..6239 , 6240..6269 , 6270..6299 , 6300..6329 , 6330..6359 , 6360..6389 , 6390..6419 , 6420..6449 , 6450..6479 , 6480..6509 , 6510..6539 , 6540..6569 , 6570..6599 , 6600..6629 , 6630..6659 , 6660..6689 , 6690..6719 , 6720..6749 , 6750..6779 , 6780..6809 , 6810..6839 , 6840..6869 , 6870..6899 , 6900..6929 , 6930..6959 , 6960..6989 , 6990..7019 , 7020..7049 , 7050..7079 , 7080..7109 , 7110..7139 , 7140..7169 , 7170..7199 , 7200..7229 , 7230..7259 , 7260..7289 , 7290..7319 , 7320..7349 , 7350..7379 , 7380..7409 , 7410..7439 , 7440..7469 , 7470..7499 , 7500..7529 , 7530..7559 , 7560..7589 , 7590..7619 , 7620..7649 , 7650..7679 , 7680..7709 , 7710..7739 , 7740..7769 , 7770..7799 , 7800..7829 , 7830..7859 , 7860..7889 , 7890..7919 , 7920..7949 , 7950..7979 , 7980..8009 , 8010..8039 , 8040..8069 , 8070..8099 , 8100..8129 , 8130..8159 , 8160..8189 , 8190..8219 , 8220..8249 , 8250..8279 , 8280..8309 , 8310..8339 , 8340..8369 , 8370..8399 , 8400..8429 , 8430..8459 , 8460..8489 , 8490..8519 , 8520..8549 , 8550..8579 , 8580..8609 , 8610..8639 , 8640..8669 , 8670..8699 , 8700..8729 , 8730..8759 , 8760..8789 , 8790..8819 , 8820..8849 , 8850..8879 , 8880..8909 , 8910..8939 , 8940..8969 , 8970..8999 , 9000..9029 , 9030..9059 , 9060..9089 , 9090..9119 , 9120..9149 , 9150..9179 , 9180..9209 , 9210..9239 , 9240..9269 , 9270..9299 , 9300..9329 , 9330..9359 , 9360..9389 , 9390..9419 , 9420..9449 , 9450..9479 , 9480..9509 , 9510..9539 , 9540..9569 , 9570..9599 , 9600..9629 , 9630..9659 , 9660..9689 , 9690..9719 , 9720..9749 , 9750..9779 , 9780..9809 , 9810..9839 , 9840..9869 , 9870..9899 , 9900..9929 , 9930..9959 , 9960..9989 , 9990..10019 , 10020..10049 , 10050..10079 , 10080..10109 , 10110..10139 , 10140..10169 , 10170..10199 , 10200..10229 , 10230..10259 , 10260..10289 , 10290..10319 , 10320..10349 , 10350..10379 , 10380..10409 , 10410..10439 , 10440..10469 , 10470..10499 , 10500..10529 , 10530..10559 , 10560..10589 , 10590..10619 , 10620..10649 , 10650..10679 , 10680..10709 , 10710..10739 , 10740..10769 , 10770..10799 , 10800..10829 , 10830..10859 , 10860..10889 , 10890..10919 , 10920..10949 , 10950..10979 , 10980..11009 , 11010..11039 , 11040..11069 , 11070..11099 , 11100..11129 , 11130..11159 , 11160..11189 , 11190..11219 , 11220..11249 , 11250..11279 , 11280..11309 , 11310..11339 , 11340..11369 , 11370..11399 , 11400..11429 , 11430..11459 , 11460..11489 , 11490..11519 , 11520..11549 , 11550..11579 , 11580..11609 , 11610..11639 , 11640..11669 , 11670..11699 , 11700..11729 , 11730..11759 , 11760..11789 , 11790..11819 , 11820..11849 , 11850..11879 , 11880..11909 , 11910..11939 , 11940..11969 , 11970..11999 , 12000..12029 , 12030..12059 , 12060..12089 , 12090..12119 , 12120..12149 , 12150..12179 , 12180..12209 , 12210..12239 , 12240..12269 , 12270..12299 , 12300..12329 , 12330..12359 , 12360..12389 , 12390..12419 , 12420..12449 , 12450..12479 , 12480..12509 , 12510..12539 , 12540..12569 , 12570..12599 , 12600..12629 , 12630..12659 , 12660..12689 , 12690..12719 , 12720..12749 , 12750..12779 , 12780..12809 , 12810..12839 , 12840..12869 , 12870..12899 , 12900..12929 , 12930..12959 , 12960..12989 , 12990..13019 , 13020..13049 , 13050..13079 , 13080..13109 , 13110..13139 , 13140..13169 , 13170..13199 , 13200..13229 , 13230..13259 , 13260..13289 , 13290..13319 , 13320..13349 , 13350..13379 , 13380..13409 , 13410..13439 , 13440..13469 , 13470..13499 , 13500..13529 , 13530..13559 , 13560..13589 , 13590..13619 , 13620..13649 , 13650..13679 , 13680..13709 , 13710..13739 , 13740..13769 , 13770..13799 , 13800..13829 , 13830..13859 , 13860..13889 , 13890..13919 , 13920..13949 , 13950..13979 , 13980..14009 , 14010..14039 , 14040..14069 , 14070..14099 , 14100..14129 , 14130..14159 , 14160..14189 , 14190..14219 , 14220..14249 , 14250..14279 , 14280..14309 , 14310..14339 , 14340..14369 , 14370..14399 , 14400..14429 , 14430..14459 , 14460..14489 , 14490..14519 , 14520..14549 , 14550..14579 , 14580..14609 , 14610..14639 , 14640..14669 , 14670..14699 , 14700..14729 , 14730..14759 , 14760..14789 , 14790..14819 , 14820..14849 , 14850..14879 , 14880..14909 , 14910..14939 , 14940..14969 , 14970..14999 , 15000..15029 , 15030..15059 , 15060..15089 , 15090..15119 , 15120..15149 , 15150..15179 , 15180..15209 , 15210..15239 , 15240..15269 , 15270..15299 , 15300..15329 , 15330..15359 , 15360..15389 , 15390..15419 , 15420..15449 , 15450..15479 , 15480..15509 , 15510..15539 , 15540..15569 , 15570..15599 , 15600..15629 , 15630..15659 , 15660..15689 , 15690..15719 , 15720..15749 , 15750..15779 , 15780..15809 , 15810..15839 , 15840..15869 , 15870..15899 , 15900..15929 , 15930..15959 , 15960..15989 , 15990..16019 , 16020..16049 , 16050..16079 , 16080..16109 , 16110..16139 , 16140..16169 , 16170..16199 , 16200..16229 , 16230..16259 , 16260..16289 , 16290..16319 , 16320..16349 , 16350..16379 , 16380..16409 , 16410..16439 , 16440..16469 , 16470..16499 , 16500..16529 , 16530..16559 , 16560..16589 , 16590..16619 , 16620..16649 , 16650..16679 , 16680..16709 , 16710..16739 , 16740..16769 , 16770..16799 , 16800..16829 , 16830..16859 , 16860..16889 , 16890..16919 , 16920..16949 , 16950..16979 , 16980..17009 , 17010..17039 , 17040..17069 , 17070..17099 , 17100..17129 , 17130..17159 , 17160..17189 , 17190..17219 , 17220..17249 , 17250..17279 , 17280..17309 , 17310..17339 , 17340..17369 , 17370..17399 , 17400..17429 , 17430..17459 , 17460..17489 , 17490..17519 , 17520..17549 , 17550..17579 , 17580..17609 , 17610..17639 , 17640..17669 , 17670..17699 , 17700..17729 , 17730..17759 , 17760..17789 , 17790..17819 , 17820..17849 , 17850..17879 , 17880..17909 , 17910..17939 , 17940..17969 , 17970..17999 , 18000..18029 , 18030..18059 , 18060..18089 , 18090..18119 , 18120..18149 , 18150..18179 , 18180..18209 , 18210..18239 , 18240..18269 , 18270..18299 , 18300..18329 , 18330..18359 , 18360..18389 , 18390..18419 , 18420..18449 , 18450..18479 , 18480..18509 , 18510..18539 , 18540..18569 , 18570..18599 , 18600..18629 , 18630..18659 , 18660..18689 , 18690..18719 , 18720..18749 , 18750..18779 , 18780..18809 , 18810..18839 , 18840..18869 , 18870..18899 , 18900..18929 , 18930..18959 , 18960..18989 , 18990..19019 , 19020..19049 , 19050..19079 , 19080..19109 , 19110..19139 , 19140..19169 , 19170..19199 , 19200..19229 , 19230..19259 , 19260..19289 , 19290..19319 , 19320..19349 , 19350..19379 , 19380..19409 , 19410..19439 , 19440..19469 , 19470..19499 , 19500..19529 , 19530..19559 , 19560..19589 , 19590..19619 , 19620..19649 , 19650..19679 , 19680..19709 , 19710..19739 , 19740..19769 , 19770..19799 , 19800..19829 , 19830..19859 , 19860..19889 , 19890..19919 , 19920..19949 , 19950..19979 , 19980..20009 , 20010..20039 , 20040..20069 , 20070..20099 , 20100..20129 , 20130..20159 , 20160..20189 , 20190..20219 , 20220..20249 , 20250..20279 , 20280..20309 , 20310..20339 , 20340..20369 , 20370..20399 , 20400..20429 , 20430..20459 , 20460..20489 , 20490..20519 , 20520..20549 , 20550..20579 , 20580..20609 , 20610..20639 , 20640..20669 , 20670..20699 , 20700..20729 , 20730..20759 , 20760..20789 , 20790..20819 , 20820..20849 , 20850..20879 , 20880..20909 , 20910..20939 , 20940..20969 , 20970..20999 , 21000..21029 , 21030..21059 , 21060..21089 , 21090..21119 , 21120..21149 , 21150..21179 , 21180..21209 , 21210..21239 , 21240..21269 , 21270..21299 , 21300..21329 , 21330..21359 , 21360..21389 , 21390..21419 , 21420..21449 , 21450..21479 , 21480..21509 , 21510..21539 , 21540..21569 , 21570..21599 , 21600..21629 , 21630..21659 , 21660..21689 , 21690..21719 , 21720..21749 , 21750..21779 , 21780..21809 , 21810..21839 , 21840..21869 , 21870..21899 , 21900..21929 , 21930..21959 , 21960..21989 , 21990..22019 , 22020..22049 , 22050..22079 , 22080..22109 , 22110..22139 , 22140..22169 , 22170..22199 , 22200..22229 , 22230..22259 , 22260..22289 , 22290..22319 , 22320..22349 , 22350..22379 , 22380..22409 , 22410..22439 , 22440..22469 , 22470..22499 , 22500..22529 , 22530..22559 , 22560..22589 , 22590..22619 , 22620..22649 , 22650..22679 , 22680..22709 , 22710..22739 , 22740..22769 , 22770..22799 , 22800..22829 , 22830..22859 , 22860..22889 , 22890..22919 , 22920..22949 , 22950..22979 , 22980..23009 , 23010..23039 , 23040..23069 , 23070..23099 , 23100..23129 , 23130..23159 , 23160..23189 , 23190..23219 , 23220..23249 , 23250..23279 , 23280..23309 , 23310..23339 , 23340..23369 , 23370..23399 , 23400..23429 , 23430..23459 , 23460..23489 , 23490..23519 , 23520..23549 , 23550..23579 , 23580..23609 , 23610..23639 , 23640..23669 , 23670..23699 , 23700..23729 , 23730..23759 , 23760..23789 , 23790..23819 , 23820..23849 , 23850..23879 , 23880..23909 , 23910..23939 , 23940..23969 , 23970..23999 , 24000..24029 , 24030..24059 , 24060..24089 , 24090..24119 , 24120..24149 , 24150..24179 , 24180..24209 , 24210..24239 , 24240..24269 , 24270..24299 , 24300..24329 , 24330..24359 , 24360..24389 , 24390..24419 , 24420..24449 , 24450..24479 , 24480..24509 , 24510..24539 , 24540..24569 , 24570..24599 , 24600..24629 , 24630..24659 , 24660..24689 , 24690..24719 , 24720..24749 , 24750..24779 , 24780..24809 , 24810..24839 , 24840..24869 , 24870..24899 , 24900..24929 , 24930..24959 , 24960..24989 , 24990..25019 , 25020..25049 , 25050..25079 , 25080..25109 , 25110..25139 , 25140..25169 , 25170..25199 , 25200..25229 , 25230..25259 , 25260..25289 , 25290..25319 , 25320..25349 , 25350..25379 , 25380..25409 , 25410..25439 , 25440..25469 , 25470..25499 , 25500..25529 , 25530..25559 , 25560..25589 , 25590..25619 , 25620..25649 , 25650..25679 , 25680..25709 , 25710..25739 , 25740..25769 , 25770..25799 , 25800..25829 , 25830..25859 , 25860..25889 , 25890..25919 , 25920..25949 , 25950..25979 , 25980..26009 , 26010..26039 , 26040..26069 , 26070..26099 , 26100..26129 , 26130..26159 , 26160..26189 , 26190..26219 , 26220..26249 , 26250..26279 , 26280..26309 , 26310..26339 , 26340..26369 , 26370..26399 , 26400..26429 , 26430..26459 , 26460..26489 , 26490..26519 , 26520..26549 , 26550..26579 , 26580..26609 , 26610..26639 , 26640..26669 , 26670..26699 , 26700..26729 , 26730..26759 , 26760..26789 , 26790..26819 , 26820..26849 , 26850..26879 , 26880..26909 , 26910..26939 , 26940..26969 , 26970..26999 , 27000..27029 , 27030..27059 , 27060..27089 , 27090..27119 , 27120..27149 , 27150..27179 , 27180..27209 , 27210..27239 , 27240..27269 , 27270..27299 , 27300..27329 , 27330..27359 , 27360..27389 , 27390..27419 , 27420..27449 , 27450..27479 , 27480..27509 , 27510..27539 , 27540..27569 , 27570..27599 , 27600..27629 , 27630..27659 , 27660..27689 , 27690..27719 , 27720..27749 , 27750..27779 , 27780..27809 , 27810..27839 , 27840..27869 , 27870..27899 , 27900..27929 , 27930..27959 , 27960..27989 , 27990..28019 , 28020..28049 , 28050..28079 , 28080..28109 , 28110..28139 , 28140..28169 , 28170..28199 , 28200..28229 , 28230..28259 , 28260..28289 , 28290..28319 , 28320..28349 , 28350..28379 , 28380..28409 , 28410..28439 , 28440..28469 , 28470..28499 , 28500..28529 , 28530..28559 , 28560..28589, >>Next

 Graphs/148406: (-1,2) (0,0)(1,-2) Form an equation from these plots and answer the same questions above: Is the degree of the polynomial odd or even? Is the leading coefficient of the polynomial positive or negative? Number of zeros? 1 solutions Answer 108759 by jim_thompson5910(28598)   on 2008-07-15 18:07:15 (Show Source): You can put this solution on YOUR website!If we plot the points we get Now draw a curve through these points to get the equation: Now if we find the equation of the line through those points, we get the equation note: let me know if you need help with finding the equation of the line. Is the degree of the polynomial odd or even? The degree is odd since one end of the polynomial goes in the positive y direction and the other end goes in the negative y direction. Is the leading coefficient of the polynomial positive or negative? Since the leading coefficient is -2, this means that the leading coefficient is negative. Number of zeros? From the graph, we can see that there is only one zero
 Equations/148310: 3x + 4 = 4x -5 3x +4-4= 4x-5-4 3x=4x-1 3x=4x-1 3 = 3 3x=3x 3 =3 x=3 I know i'm doing somthing wrong. I think i miss a step. 1 solutions Answer 108709 by jim_thompson5910(28598)   on 2008-07-15 00:15:47 (Show Source): You can put this solution on YOUR website! Start with the given equation. Subtract from both sides. Subtract from both sides. Combine like terms on the left side. Combine like terms on the right side. Divide both sides by to isolate . Reduce. ---------------------------------------------------------------------- Answer: So the answer is
 Rational-functions/148309: Write in standard form: (3-3i)/(4i)1 solutions Answer 108708 by jim_thompson5910(28598)   on 2008-07-15 00:09:24 (Show Source): You can put this solution on YOUR website! Start with the given expression. Multiply the fraction by Combine the fractions Distribute and multiply Replace with -1 Multiply Break up the fraction Reduce Rearrange the terms. Now the number is in standard form a+bi where and
 Rational-functions/148308: Write in standard form: -i+(7+5i)-3(2-3i)1 solutions Answer 108707 by jim_thompson5910(28598)   on 2008-07-15 00:07:53 (Show Source): You can put this solution on YOUR website! Start with the given expression. Distribute Group like terms Group like terms Now the number is in standard form a+bi where a=1 and b=13
 Rational-functions/148307: Write in standard form: (3-2i)^21 solutions Answer 108706 by jim_thompson5910(28598)   on 2008-07-14 23:59:23 (Show Source): You can put this solution on YOUR website! Start with the given expression. Expand. Remember something like . Now let's FOIL the expression. Remember, when you FOIL an expression, you follow this procedure: Multiply the First terms:. Multiply the Outer terms:. Multiply the Inner terms:. Multiply the Last terms:. Now collect every term to make a single expression. Now combine like terms. Now the number is in standard form a+bi where a=5 and b=-12
 Rational-functions/148306: Solve 4x^2+20=0 1 solutions Answer 108705 by jim_thompson5910(28598)   on 2008-07-14 23:57:19 (Show Source): You can put this solution on YOUR website! Start with the given equation. Subtract from both sides. Combine like terms on the right side. Divide both sides by to isolate . Reduce. Take the square root of both sides. or Break up the expression. or Simplify the square root. So our answers are or
 Rational-functions/148305: Write in standard form: (1+i)-(8+3i) 1 solutions Answer 108704 by jim_thompson5910(28598)   on 2008-07-14 23:56:23 (Show Source): You can put this solution on YOUR website! Start with the given expression. Distribute Group like terms Combine like terms Now the expression is in standard form where a=-7 and b=-2
 Rational-functions/148304: Write in standard form: (5+8i)/(6-i) 1 solutions Answer 108703 by jim_thompson5910(28598)   on 2008-07-14 23:55:15 (Show Source): You can put this solution on YOUR website! Start with the given expression Multiply the fraction by Foil and Multiply Break up the fraction. So the expression is now in standard form where and
 Rational-functions/148303: Solve 4x^2+5=-7 1 solutions Answer 108702 by jim_thompson5910(28598)   on 2008-07-14 23:52:44 (Show Source): You can put this solution on YOUR website! Start with the given equation. Subtract from both sides. Combine like terms on the right side. Divide both sides by to isolate . Reduce. Take the square root of both sides. or Break up the expression. or Simplify the square root. So our answers are or
 Rational-functions/148302: write in standard form: (8+5i)/(6-4i) 1 solutions Answer 108701 by jim_thompson5910(28598)   on 2008-07-14 23:51:24 (Show Source): You can put this solution on YOUR website! Start with the given expression. Multiply the fraction by Combine the fractions. FOIL Replace with Multiply Combine like terms. Break up the fraction Reduce So the expression is now in a+bi form where and
 Rational-functions/148301: Identify the real and imaginary part: 14+9i 1 solutions Answer 108700 by jim_thompson5910(28598)   on 2008-07-14 23:49:48 (Show Source): You can put this solution on YOUR website!Any complex number of the form a+bi has "a" as the real part and "b" as the imaginary part. So for the complex number 14+9i, the real part is a=14 and the imaginary part is b=9
Rational-functions/148299: (22 pts) Consider the polynomial f(x) = 2x^3 – 3x^2 – 8x – 3.
(i) By using the Rational Zero Theorem, list all possible rational zeros of the given polynomial.

(ii) Find all of the zeros of the given polynomial. Be sure to show work, explaining how you have found them.

1 solutions

Answer 108699 by jim_thompson5910(28598)   on 2008-07-14 23:30:26 (Show Source):
You can put this solution on YOUR website!
i)

Any rational zero can be found through this equation

where p and q are the factors of the last and first coefficients

So let's list the factors of -3 (the last coefficient):

Now let's list the factors of 2 (the first coefficient):

Now let's divide each factor of the last coefficient by each factor of the first coefficient

Now simplify

These are all the distinct rational zeros of the function that could occur

--------------------------------------------------------

ii)

With the help of a graphing calculator, we see that -1 is a zero of

note: let me know if you need to find the zeros a different way.

So let's set up a synthetic division table by placing the value -1 in the upper left corner and placing the coefficients of the polynomial to the right of -1.
 -1 | 2 -3 -8 -3 |

Start by bringing down the leading coefficient (it is the coefficient with the highest exponent which is 2)
 -1 | 2 -3 -8 -3 | 2

Multiply -1 by 2 and place the product (which is -2) right underneath the second coefficient (which is -3)
 -1 | 2 -3 -8 -3 | -2 2

Add -2 and -3 to get -5. Place the sum right underneath -2.
 -1 | 2 -3 -8 -3 | -2 2 -5

Multiply -1 by -5 and place the product (which is 5) right underneath the third coefficient (which is -8)
 -1 | 2 -3 -8 -3 | -2 5 2 -5

Add 5 and -8 to get -3. Place the sum right underneath 5.
 -1 | 2 -3 -8 -3 | -2 5 2 -5 -3

Multiply -1 by -3 and place the product (which is 3) right underneath the fourth coefficient (which is -3)
 -1 | 2 -3 -8 -3 | -2 5 3 2 -5 -3

Add 3 and -3 to get 0. Place the sum right underneath 3.
 -1 | 2 -3 -8 -3 | -2 5 3 2 -5 -3 0

Since the last column adds to zero, this means that -1 is a zero of (this confirms our original claim).

Now lets look at the bottom row of coefficients:

The first 3 coefficients (2,-5,-3) form the quotient

So

Basically factors to

Now lets find the zeros for .

Let's use the quadratic formula to solve for x

Plug in , , and

Negate to get .

Square to get .

Multiply to get

Rewrite as

Multiply and to get .

Take the square root of to get .

or Break up the expression.

or Combine like terms.

or Simplify.

So the zeros of are , , or

Rational-functions/148297: Use synthetic division to divide the polynomial 2x^3 – 7x + 10 by x + 3, and write the quotient polynomial and the remainder.
1 solutions

Answer 108698 by jim_thompson5910(28598)   on 2008-07-14 23:17:30 (Show Source):
You can put this solution on YOUR website!

Let's simplify this expression using synthetic division

First lets find our test zero:

Set the denominator equal to zero

Solve for x.

so our test zero is -3

Now set up the synthetic division table by placing the test zero in the upper left corner and placing the coefficients of the numerator to the right of the test zero.(note: remember if a polynomial goes from to there is a zero coefficient for . This is simply because really looks like
 -3 | 2 0 -7 10 |

Start by bringing down the leading coefficient (it is the coefficient with the highest exponent which is 2)
 -3 | 2 0 -7 10 | 2

Multiply -3 by 2 and place the product (which is -6) right underneath the second coefficient (which is 0)
 -3 | 2 0 -7 10 | -6 2

Add -6 and 0 to get -6. Place the sum right underneath -6.
 -3 | 2 0 -7 10 | -6 2 -6

Multiply -3 by -6 and place the product (which is 18) right underneath the third coefficient (which is -7)
 -3 | 2 0 -7 10 | -6 18 2 -6

Add 18 and -7 to get 11. Place the sum right underneath 18.
 -3 | 2 0 -7 10 | -6 18 2 -6 11

Multiply -3 by 11 and place the product (which is -33) right underneath the fourth coefficient (which is 10)
 -3 | 2 0 -7 10 | -6 18 -33 2 -6 11

Add -33 and 10 to get -23. Place the sum right underneath -33.
 -3 | 2 0 -7 10 | -6 18 -33 2 -6 11 -23

Since the last column adds to -23, we have a remainder of -23. This means is not a factor of
Now lets look at the bottom row of coefficients:

The first 3 coefficients (2,-6,11) form the quotient

and the last coefficient -23, is the remainder, which is placed over like this

Putting this altogether, we get:

So

which looks like this in remainder form:
remainder -23

 Functions/148253: The velocity of sound is given by . Find the temperature when the velocity is 348 m/s1 solutions Answer 108651 by jim_thompson5910(28598)   on 2008-07-14 16:24:34 (Show Source): You can put this solution on YOUR website! Start with the given equation. Plug in Divide both sides by 20. Square both sides. Square 17.4 to get 302.6 Divide both sides by 273. Take the 6th root of both sides to isolate t. Take the 6th root of 1.10842 to get 1.0173 Now round to the nearest degree So when the temperature is 1 degree Celcius, then the approximate velocity of sound is 348 meters per second
 Linear-equations/148220: 31. e^ln(3) = s. 1 b. 2 c. 0 d. e Can someone help me out with this? Eddie 1 solutions Answer 108622 by jim_thompson5910(28598)   on 2008-07-14 12:46:04 (Show Source): You can put this solution on YOUR website!Let y=ln(3). So this means that e^y=3 So e^(ln(3))=e^y=3 So the answer is 3. I don't see "3" as an answer. So make sure that you wrote the problem correctly.
 Equations/148216: Which of the following cannot be a base for exponential and logarithmic functions? 0.1 π 1 e 1 solutions Answer 108621 by jim_thompson5910(28598)   on 2008-07-14 12:43:18 (Show Source): You can put this solution on YOUR website!The previous solution is correct, but there's more to this solution. Let's say that you could have a base of 1. So this means that can be written as by use of the property ===> Now using the change of base formula, we can rewrite as . However, which means that becomes . Since you cannot divide by zero, this means that a base of 1 is not possible for a logarithmic function.
 Exponential-and-logarithmic-functions/148215: Determine x for 10^2x + 1 = 1000^x - 1 a. x = -2 b. x = 4 c. x = 9 d. No solution 1 solutions Answer 108614 by jim_thompson5910(28598)   on 2008-07-14 12:30:33 (Show Source): You can put this solution on YOUR website! Start with the given equation. Rewrite 1000 as Multiply the exponents. Distribute. Since the bases are equal, this means that the exponents are equal. Subtract from both sides. Subtract from both sides. Combine like terms on the left side. Combine like terms on the right side. Divide both sides by to isolate . Reduce. ---------------------------------------------------------------------- Answer: So the answer is
 Graphs/148210: IN NEED OF HELP. I CANT SEEM TO GET THESE CAN ANYONE HELP? FIND THE SLOPE AND y-INTERCEPT OF THE GIVEN LINE. 1. 5y-2x+8=0 A. m = B. y-intercept 2. x=-9 A. m = B. y-intercept 3. 2x-7y=8 A. m = y-intercept D.y=5 A. m= B. y-intercept1 solutions Answer 108612 by jim_thompson5910(28598)   on 2008-07-14 12:27:34 (Show Source): You can put this solution on YOUR website!I'll do the first two to get you started. # 1 Start with the given equation. Add to both sides. Subtract from both sides. Combine like terms on the right side. Divide both sides by to isolate . Break up the fraction. Now the equation is in slope intercept form where the slope is and the y-intercept is # 2 Since the equation x=-9 is not in slope intercept form, this means that the slope is undefined and there is no y-intercept (the line is parallel to the y-axis).
 Polynomials-and-rational-expressions/148208: For all x=0 and y=0, (3x^3y^3)/xy=? Multiple choose answers are A. 9x^3y^8 B. 9y^4/x C. 9y^4/x^2 D. 9y^5/x^5 E. 9y^7/x^5 What is the right answer1 solutions Answer 108610 by jim_thompson5910(28598)   on 2008-07-14 12:22:12 (Show Source): You can put this solution on YOUR website! Start with the given expression. Expand. Remember, Highlight the common terms. Cancel out the common terms. Simplify. Regroup. So simplifies to . I don't see this as an answer choice so double check the problem
 Equations/148209: What is the domain of standard exponential functions? a. x (0, ∞) b. x (-∞, ∞) c. x [0, ∞) d. x (0, 1) (1, 2) (2, 3) (3, 4) (4, 5) ..... 1 solutions Answer 108608 by jim_thompson5910(28598)   on 2008-07-14 12:19:18 (Show Source): You can put this solution on YOUR website!If you graph a standard exponential function like , you get From the graph, we can see that x can be any number. So the domain is b. x (-∞, ∞)
 Equations/148207: If log a ≈ 0.250 and log b ≈ 0.644, then log b/a ≈ a. 2.576 b. 0.161 c. 0.394 d. There is insufficient information for a meaningful answer 1 solutions Answer 108607 by jim_thompson5910(28598)   on 2008-07-14 12:18:02 (Show Source): You can put this solution on YOUR website!log (b/a)=log(b)-log(a)=0.644-0.250=0.394 So log (b/a)≈0.394
 Equations/148206: Which of the following is a logarithmic function? a. f(x) = x^2 b. L(t) = 1 - e^-t c. g(q) = q^-2 d. R(x) = 4 ln(x) 1 solutions Answer 108606 by jim_thompson5910(28598)   on 2008-07-14 12:16:47 (Show Source): You can put this solution on YOUR website!Remember, ln(x) is the natural log of x. So this means that d)R(x) = 4 ln(x) is a logarithmic function.
 Equations/148205: Which of the following represents the numerical solution of: log2((4^2)(2^3) a. 5 b. 12 c. 7 d. There is no numerical solution; this expression cannot be resolved 1 solutions Answer 108605 by jim_thompson5910(28598)   on 2008-07-14 12:15:52 (Show Source): You can put this solution on YOUR website! Start with the given expression. Rewrite as Multiply the exponents. Multiply the terms by adding the exponents. Rewrite the expression using the identity . Evaluate to get 1 Multiply So
 Geometry_proofs/148202: Verify the identity. a)(csc(-t)-sin(-t))/(sin(-t))=cot^(2)t b)ln cotx= -ln tanx1 solutions Answer 108603 by jim_thompson5910(28598)   on 2008-07-14 12:12:06 (Show Source): You can put this solution on YOUR website!a) Note: I'm only algebraically manipulating the left side. I'm showing the right side for comparison. (csc(-t)-sin(-t))/(sin(-t))=cot^(2)t ... Start with the given equation (1/sin(-t)-sin(-t))/(sin(-t))=cot^(2)t .... Replace csc(-t) with 1/sin(-t) -(-1/sin(t)+sin(t))/(sin(t))=cot^(2)t .... Replace each sin(-t) with -sin(t) (1/sin(t)-sin(t))/(sin(t))=cot^(2)t .... Simplify (1/sin(t)-sin^2(t)/sin(t))/(sin(t))=cot^(2)t ... Rewrite sin(t) as sin^2(t)/sin(t) ((1-sin^2(t))/sin(t))/(sin(t))=cot^(2)t ... Combine the fractions in the numerator ((1-sin^2(t))/sin^2(t)=cot^(2)t ... Divide the fractions (cos^2(t))/sin^2(t)=cot^(2)t ... Replace 1-sin^2(t) with cos^2(t) cot^2(t)=cot^(2)t .... Replace (cos^2(t))/sin^2(t) with cot^2(t) So this verifies the identity. -------------------------------------------------- b) Note: I'm only algebraically manipulating the left side. I'm showing the right side for comparison. ln(cot(x))= -ln(tan(x)) ... Start with the given equation. ln(1/tan(x))= -ln(tan(x)) ... Rewrite cot(x) as 1/tan(x) ln((tan(x))^(-1))= -ln(tan(x)) ... Rewrite 1/tan(x) as (tan(x))^(-1) -1*ln(tan(x))= -ln(tan(x)) ... Rewrite the left side using the identity -ln(tan(x))= -ln(tan(x)) .... Multiply So this verifies the identity.