document.write( "Question 136098: Kurt rows 72 km upstream and 72km back in a total of 7hrs. The speed of the river is 3km/h. Find kurt's speed in still water. \n" ); document.write( "
Algebra.Com's Answer #99683 by edjones(8007)\"\" \"About 
You can put this solution on YOUR website!
Let s=Kurt's speed in still water.
\n" ); document.write( "d=st
\n" ); document.write( "s-3=speed upstream
\n" ); document.write( "s+3=speed downstream
\n" ); document.write( "t=time upstream
\n" ); document.write( "7-t=time downstream
\n" ); document.write( ".
\n" ); document.write( "A) t(s-3)=72 upstream
\n" ); document.write( "B)
\n" ); document.write( "-(t-7)(s+3)=72 Downstream
\n" ); document.write( "-ts+7s-3t+21=72
\n" ); document.write( ".
\n" ); document.write( "A) t=72/(s-3)
\n" ); document.write( "B)
\n" ); document.write( "-72/(s-3) * s + 7s - 3*72/(s-3)=72-21 replace t with 72/(s-3)
\n" ); document.write( "-72s/(s-3) + 7s - 216/(s-3)=51
\n" ); document.write( "-72s+7s(s-3)-216=51(s-3) multiply each side by s-3 to eliminate fractions.
\n" ); document.write( "-72s+7s^2-21s-216=51s-153
\n" ); document.write( "-72s+7s^2-21s-216-51s+153=0
\n" ); document.write( "7s^2-144s-63=0
\n" ); document.write( "s=21 kph (see below)
\n" ); document.write( ".
\n" ); document.write( "Check:
\n" ); document.write( "t=72/21-3=72/18=4h upstream
\n" ); document.write( "7-4=3h downstream
\n" ); document.write( "18*4=72
\n" ); document.write( "24*3=72
\n" ); document.write( ".
\n" ); document.write( "Ed
\n" ); document.write( ".
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: SOLVE quadratic equation (work shown, graph etc)
Quadratic equation \"ax%5E2%2Bbx%2Bc=0\" (in our case \"7x%5E2%2B-144x%2B-63+=+0\") has the following solutons:
\n" ); document.write( "
\n" ); document.write( " \"x%5B12%5D+=+%28b%2B-sqrt%28+b%5E2-4ac+%29%29%2F2%5Ca\"
\n" ); document.write( "
\n" ); document.write( " For these solutions to exist, the discriminant \"b%5E2-4ac\" should not be a negative number.
\n" ); document.write( "
\n" ); document.write( " First, we need to compute the discriminant \"b%5E2-4ac\": \"b%5E2-4ac=%28-144%29%5E2-4%2A7%2A-63=22500\".
\n" ); document.write( "
\n" ); document.write( " Discriminant d=22500 is greater than zero. That means that there are two solutions: \"+x%5B12%5D+=+%28--144%2B-sqrt%28+22500+%29%29%2F2%5Ca\".
\n" ); document.write( "
\n" ); document.write( " \"x%5B1%5D+=+%28-%28-144%29%2Bsqrt%28+22500+%29%29%2F2%5C7+=+21\"
\n" ); document.write( " \"x%5B2%5D+=+%28-%28-144%29-sqrt%28+22500+%29%29%2F2%5C7+=+-0.428571428571429\"
\n" ); document.write( "
\n" ); document.write( " Quadratic expression \"7x%5E2%2B-144x%2B-63\" can be factored:
\n" ); document.write( " \"7x%5E2%2B-144x%2B-63+=+%28x-21%29%2A%28x--0.428571428571429%29\"
\n" ); document.write( " Again, the answer is: 21, -0.428571428571429.\n" ); document.write( "Here's your graph:
\n" ); document.write( "\"graph%28+500%2C+500%2C+-10%2C+10%2C+-20%2C+20%2C+7%2Ax%5E2%2B-144%2Ax%2B-63+%29\"

\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );