document.write( "Question 136098: Kurt rows 72 km upstream and 72km back in a total of 7hrs. The speed of the river is 3km/h. Find kurt's speed in still water. \n" ); document.write( "
Algebra.Com's Answer #99683 by edjones(8007)![]() ![]() You can put this solution on YOUR website! Let s=Kurt's speed in still water. \n" ); document.write( "d=st \n" ); document.write( "s-3=speed upstream \n" ); document.write( "s+3=speed downstream \n" ); document.write( "t=time upstream \n" ); document.write( "7-t=time downstream \n" ); document.write( ". \n" ); document.write( "A) t(s-3)=72 upstream \n" ); document.write( "B) \n" ); document.write( "-(t-7)(s+3)=72 Downstream \n" ); document.write( "-ts+7s-3t+21=72 \n" ); document.write( ". \n" ); document.write( "A) t=72/(s-3) \n" ); document.write( "B) \n" ); document.write( "-72/(s-3) * s + 7s - 3*72/(s-3)=72-21 replace t with 72/(s-3) \n" ); document.write( "-72s/(s-3) + 7s - 216/(s-3)=51 \n" ); document.write( "-72s+7s(s-3)-216=51(s-3) multiply each side by s-3 to eliminate fractions. \n" ); document.write( "-72s+7s^2-21s-216=51s-153 \n" ); document.write( "-72s+7s^2-21s-216-51s+153=0 \n" ); document.write( "7s^2-144s-63=0 \n" ); document.write( "s=21 kph (see below) \n" ); document.write( ". \n" ); document.write( "Check: \n" ); document.write( "t=72/21-3=72/18=4h upstream \n" ); document.write( "7-4=3h downstream \n" ); document.write( "18*4=72 \n" ); document.write( "24*3=72 \n" ); document.write( ". \n" ); document.write( "Ed \n" ); document.write( ". \n" ); document.write( "
\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |