document.write( "Question 135709: 2. Check for symmetries, find intercepts and asymptotes, analyze the behavior near
\n" ); document.write( "the graph of: 4y^2 + x – xy^2 – 1 = 0 (first solve for y^2) Is this thee graph of a function?
\n" ); document.write( "

Algebra.Com's Answer #99454 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( " \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4y%5E2+%2B+x-xy%5E2-1+=+0\" Start with the given equation\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4y%5E2-xy%5E2=+1-x\" Subtract x from both sides\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%5E2%284-x%29=+1-x\" Factor out the GCF \"y%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%5E2+=++%281-x%29%2F%284-x%29+\" Divide both sides by \"4-x\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-----------------------------------\r
\n" ); document.write( "\n" ); document.write( "\"y%5E2+=++%281-0%29%2F%284-0%29+\" To find the y-intercept, plug in \"x=0\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%5E2+=++1%2F4+\" Simplify\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y+=++0%2B-sqrt%281%2F4%29+\" Take the square root of both sides\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=1%2F2\" or \"y=-1%2F2\" Simplify\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the y-intercepts are (0,\"1%2F2\") and (0,\"-1%2F2\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "----------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%5E2+=++%281-x%29%2F%284-x%29+\" Go back to the original equation\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"0%5E2+=++%281-x%29%2F%284-x%29+\" To find the x-intercept, plug in \"y=0\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"0+=++%281-x%29%2F%284-x%29+\" Square 0 to get 0\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"0%284-x%29+=++1-x+\" Multiply both sides by 4-x\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"0+=++1-x+\" Multiply\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=++1+\" Add x to both sides\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the x-intercept is (1,0)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-----------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4-x=0\" To find the vertical asymptote(s), simply set the denominator equal to zero\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=4\" Solve for x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the vertical asymptote is at \"x=4\" \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-----------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%5E2+=++%281-x%29%2F%284-x%29+\" Go back to the original equation\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%5E2+=++%28-x%2B1%29%2F%28-x%2B4%29+\" Rearrange the terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice how the coefficient of \"x\" for the numerator and denominator is -1. So the horizontal asymptote is the ratio \"-1%2F-1=1\". Since we are dealing with a square in \"y%5E2\", this means that the final equation looks like \"y+=++0%2B-sqrt%28%281-x%29%2F%284-x%29%29\". So there are two final parts \"y+=++sqrt%28%281-x%29%2F%284-x%29%29\" and \"y+=++-sqrt%28%281-x%29%2F%284-x%29%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This means that there is symmetry with respect with the x-axis and that there are two horizontal asymptotes \"y=1\" and \"y=-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice if we graph both \"y+=++sqrt%28%281-x%29%2F%284-x%29%29\" and \"y+=++-sqrt%28%281-x%29%2F%284-x%29%29\", we can visually verify our answer\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice how that if you pass a vertical line through the graph, the line will intersect with the graph more than once. So this tells us that this graph is not a function since it fails the vertical line test.
\n" ); document.write( "
\n" );