document.write( "Question 131038: Solve the system of equations by the substitution method.\r
\n" ); document.write( "\n" ); document.write( " 5x+15y=10\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " 2x+8y=6\r
\n" ); document.write( "\n" ); document.write( " The solution is:
\n" ); document.write( "(Type an ordered pair. Type integers or simplified fractions. Type N if there is no solution. Type I if there are infinitely many solutions.)
\n" ); document.write( "

Algebra.Com's Answer #95661 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Start with the given system of equations:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"system%285x%2B15y=10%2C2x%2B8y=6%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now in order to solve this system by using substitution, we need to solve (or isolate) one variable. I'm going to solve for y.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So let's isolate y in the first equation\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5x%2B15y=10\" Start with the first equation\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"15y=10-5x\" Subtract \"5x\" from both sides\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"15y=-5x%2B10\" Rearrange the equation\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%28-5x%2B10%29%2F%2815%29\" Divide both sides by \"15\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%28%28-5%29%2F%2815%29%29x%2B%2810%29%2F%2815%29\" Break up the fraction\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%28-1%2F3%29x%2B2%2F3\" Reduce\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since \"y=%28-1%2F3%29x%2B2%2F3\", we can now replace each \"y\" in the second equation with \"%28-1%2F3%29x%2B2%2F3\" to solve for \"x\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%2B8highlight%28%28%28-1%2F3%29x%2B2%2F3%29%29=6\" Plug in \"y=%28-1%2F3%29x%2B2%2F3\" into the first equation. In other words, replace each \"y\" with \"%28-1%2F3%29x%2B2%2F3\". Notice we've eliminated the \"y\" variables. So we now have a simple equation with one unknown.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%2B%288%29%28-1%2F3%29x%2B%288%29%282%2F3%29=6\" Distribute \"8\" to \"%28-1%2F3%29x%2B2%2F3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x-%288%2F3%29x%2B16%2F3=6\" Multiply\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283%29%282x-%288%2F3%29x%2B16%2F3%29=%283%29%286%29\" Multiply both sides by the LCM of 3. This will eliminate the fractions (note: if you need help with finding the LCM, check out this solver)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6x-8x%2B16=18\" Distribute and multiply the LCM to each side\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-2x%2B16=18\" Combine like terms on the left side\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-2x=18-16\"Subtract 16 from both sides\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-2x=2\" Combine like terms on the right side\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=%282%29%2F%28-2%29\" Divide both sides by -2 to isolate x\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=-1\" Divide\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-----------------First Answer------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the first part of our answer is: \"x=-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since we know that \"x=-1\" we can plug it into the equation \"y=%28-1%2F3%29x%2B2%2F3\" (remember we previously solved for \"y\" in the first equation).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%28-1%2F3%29x%2B2%2F3\" Start with the equation where \"y\" was previously isolated.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%28-1%2F3%29%28-1%29%2B2%2F3\" Plug in \"x=-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=1%2F3%2B2%2F3\" Multiply\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=1\" Combine like terms and reduce. (note: if you need help with fractions, check out this solver)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-----------------Second Answer------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the second part of our answer is: \"y=1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-----------------Summary------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our answers are:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=-1\" and \"y=1\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "which form the point \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's graph the two equations (if you need help with graphing, check out this solver)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the graph, we can see that the two equations intersect at . This visually verifies our answer.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " graph of \"5x%2B15y=10\" (red) and \"2x%2B8y=6\" (green) and the intersection of the lines (blue circle).\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );