document.write( "Question 129107This question is from textbook Algebra !
\n" );
document.write( ": The sum of the digits of a two-digit number is 8. If 16 is added to the orginal number, the result is 3 times the original number with its digits reversed. Find the orginal number. This is the problum and have no idea how to do it because i was gone when we learned this and i have bin working on this for litterly 2 hours please help me \n" );
document.write( "
Algebra.Com's Answer #94398 by ptaylor(2198) You can put this solution on YOUR website! Let x=one of the digits---the 10's digit \n" ); document.write( "And let y=the other digit---the unit digit\r \n" ); document.write( "\n" ); document.write( "Now we are told that x+y=8-------------------------eq1\r \n" ); document.write( "\n" ); document.write( "We know that the original number can be written as:\r \n" ); document.write( "\n" ); document.write( "10x+y now if we add 16 to this, we get (10x+y)+16 -------1\r \n" ); document.write( "\n" ); document.write( "If we reverse the digits of the original number, we get:\r \n" ); document.write( "\n" ); document.write( "10y+x and three time this number is:\r \n" ); document.write( "\n" ); document.write( " 3(10y+x)----2\r \n" ); document.write( "\n" ); document.write( "We are told that 1=2, so:\r \n" ); document.write( "\n" ); document.write( "(10x+y)+16=3(10y+x) get rid of parens\r \n" ); document.write( "\n" ); document.write( "10x+y+16=30y+3x subtract 10x and also y from both sides:\r \n" ); document.write( "\n" ); document.write( "10x-10x+y-y+16=30y-y+3x-10x collect like terms\r \n" ); document.write( "\n" ); document.write( "16=29y-7x or \n" ); document.write( "-7x+29y=16-----------------------------------------eq2\r \n" ); document.write( "\n" ); document.write( "substitute x=8-y from eq1 into eq2 and we have:\r \n" ); document.write( "\n" ); document.write( "-7(8-y)+29y=16 get rid of parens\r \n" ); document.write( "\n" ); document.write( "-56+7y+29y=16 add 56 to both sides\r \n" ); document.write( "\n" ); document.write( "-56+56+7y+29y=16+56 collect like terms\r \n" ); document.write( "\n" ); document.write( "36y=72 divide both sides by 36\r \n" ); document.write( "\n" ); document.write( "y=2--------------------------------------the unit digit\r \n" ); document.write( "\n" ); document.write( "substitute y=2 into eq1 and we get:\r \n" ); document.write( "\n" ); document.write( "x+2=8 subtract 2 from both sides\r \n" ); document.write( "\n" ); document.write( "x+2-2=8-2 collect like terms\r \n" ); document.write( "\n" ); document.write( "x=6-----------------the 10's digit\r \n" ); document.write( "\n" ); document.write( "Thus, the original number is 62\r \n" ); document.write( "\n" ); document.write( "CK\r \n" ); document.write( "\n" ); document.write( "6+2=8 \n" ); document.write( "8=8 \n" ); document.write( "and\r \n" ); document.write( "\n" ); document.write( "62+16=3*26\r \n" ); document.write( "\n" ); document.write( "78=78\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hope this helps---ptaylor \n" ); document.write( " \n" ); document.write( " |