document.write( "Question 128130: I am a homeschooling mom. I have come across these problems. I don't understand how it works. I want to be able to understand in order to teach my kid the right way. \r
\n" );
document.write( "\n" );
document.write( "Here are the problems in one 'sentence': ( if you see the dashes between these numbers - that is division. And..as for the # 3 and # 4 ...I have been unable to get the denominator to look the way it should... under the first combination it is divided by 2x; and the second combination, it is divded by an x.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "1.
\n" );
document.write( "3/2 + 3/x
\n" );
document.write( "--------- =
\n" );
document.write( " 2+4/x \r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "2.
\n" );
document.write( "(3/2+3/x)/(2+4/x)=\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "3.
\n" );
document.write( "(3x+6)/(2x+4)
\n" );
document.write( "----- ---- =
\n" );
document.write( "2x x \r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "4.
\n" );
document.write( "3x+6 * 2x+4
\n" );
document.write( "---- ---- =
\n" );
document.write( "2x x \r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "5.
\n" );
document.write( "
\n" );
document.write( " -----------
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "I would very much appreciate your explanation and how you arrive to the answer..and please make it in layman's terms. Thanks. \n" );
document.write( "
Algebra.Com's Answer #93930 by ankor@dixie-net.com(22740)![]() ![]() You can put this solution on YOUR website! 1. \n" ); document.write( " \n" ); document.write( "------- \n" ); document.write( "2 + \n" ); document.write( ": \n" ); document.write( "Put the fractions in the numerator & denominator over a single common denominator \n" ); document.write( " \n" ); document.write( "---------- \n" ); document.write( " \n" ); document.write( ": \n" ); document.write( " \n" ); document.write( "---------- \n" ); document.write( " \n" ); document.write( ": \n" ); document.write( "Factor out 3 in the numerator & 2 in the denominator \n" ); document.write( " \n" ); document.write( "---------- \n" ); document.write( " \n" ); document.write( "; \n" ); document.write( "Remember when you divide fractions, invert the dividing fraction and multiply \n" ); document.write( " \n" ); document.write( ": \n" ); document.write( "Cancel out (x+2) and x, leaving \n" ); document.write( " \n" ); document.write( ": \n" ); document.write( ": \n" ); document.write( "2. \n" ); document.write( "This is the same as the first one \n" ); document.write( ": \n" ); document.write( "3. This is similar to the first equation after we put it over common denominators \n" ); document.write( " \n" ); document.write( "---------- \n" ); document.write( " \n" ); document.write( ": \n" ); document.write( "Factor out 3 in the numerator & 2 in the denominator \n" ); document.write( " \n" ); document.write( "---------- \n" ); document.write( " \n" ); document.write( "; \n" ); document.write( "Remember when you divide fractions, invert the dividing fraction and multiply \n" ); document.write( " \n" ); document.write( ": \n" ); document.write( "Cancel out (x+2) and x, leaving \n" ); document.write( " \n" ); document.write( ": \n" ); document.write( ": \n" ); document.write( "5. \n" ); document.write( "6x^2+24x+24 \n" ); document.write( "----------- \n" ); document.write( "2x^2 \n" ); document.write( ": \n" ); document.write( "notice that you can factor out 6 in the numerator, then cancel 2 into 6 \n" ); document.write( " \n" ); document.write( ": \n" ); document.write( "The numerator has a perfect square and can be factored to: \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |