document.write( "Question 124742: Please solve:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2/2-x + 3/x+2 = 2x/x^2 - 4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Thanks in advance!
\n" ); document.write( "

Algebra.Com's Answer #91448 by dolly(163)\"\" \"About 
You can put this solution on YOUR website!
2/2-x + 3/x+2 = 2x/x^2 - 4
\n" ); document.write( "This can be re written as :
\n" ); document.write( " 3/x+2 + 2/2-x = 2x/x^2 - 4
\n" ); document.write( "==> 3/x+2 - 2/x-2 = 2x/x^2 - 4 [the denominator is written as x-2 with a negative sign]
\n" ); document.write( "Taking the common denominator for the left side we get it as (x+2)(x-2)
\n" ); document.write( "Thus [3(x-2)- 2(x+2)] / (x+2)(x-2) = 2x / (x^2 - 4)
\n" ); document.write( "==> [3x - 6 - 2x - 4] / (x^2 - 4) = 2x / (x^2 - 4)[as (x+2)(x-2)= (x^2 - 4) ]
\n" ); document.write( "==> [3x - 6 - 2x - 4] = 2x [ multiplying both the sides by the denominator]
\n" ); document.write( "==> x - 10 = 2x
\n" ); document.write( "==> x - 2x = 10 [ adding - 2x + 10 to both sides]
\n" ); document.write( "==> - x = 10
\n" ); document.write( "==> x = - 10\r
\n" ); document.write( "\n" ); document.write( "good luck!!!\r
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );