document.write( "Question 120379: i really need help with this one:\r
\n" ); document.write( "\n" ); document.write( "Given that, a=b+1\r
\n" ); document.write( "\n" ); document.write( "Prove that \"%28a%2Bb%29%28a%5E2%2Bb%5E2%29%28a%5E4%2Bb%5E4%29=+a%5E8-b%5E8\"\r
\n" ); document.write( "\n" ); document.write( "Thanks in advance.
\n" ); document.write( "

Algebra.Com's Answer #88257 by scott8148(6628)\"\" \"About 
You can put this solution on YOUR website!
factoring a^8-b^8 (difference of two squares) gives (a^4+b^4)(a^4-b^4)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "factoring a^4-b^4 (difference of two squares) gives (a^2+b^2)(a^2-b^2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "factoring a^2-b^2 (difference of two squares) gives (a+b)(a-b)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "substitution gives a-b=b+1-b=1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "so a^8-b^8=(a^4+b^4)(a^2+b^2)(a+b)(1)\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );