document.write( "Question 119529This question is from textbook
\n" );
document.write( ": determine whether the equation has 2 solutions, 1 solution, or no solution. SHOW WORK! PUT IN STANDARD FORM!\r
\n" );
document.write( "\n" );
document.write( "22)x^2-3x+2=0
\n" );
document.write( "24)-3x^2+5x-1=0
\n" );
document.write( "26)x^2-2x+4=0
\n" );
document.write( "28)3x^2-6x+3=0
\n" );
document.write( "30)-5x^2+6x-6=0 \n" );
document.write( "
Algebra.Com's Answer #87595 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! I'll do the first two to help you get started\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "#22\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " From the quadratic formula\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the discriminant consists of all of the terms in the square root. So the discriminant is\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the discriminant tells us how many solutions (and what type of solutions) we can expect for any quadratic.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now let's find the discriminant for \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since the discriminant equals 1 (which is greater than zero) , this means there are two real solutions. Remember if the discriminant is greater than zero, then the quadratic will have two real solutions.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "#24\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " From the quadratic formula\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the discriminant consists of all of the terms in the square root. So the discriminant is\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the discriminant tells us how many solutions (and what type of solutions) we can expect for any quadratic.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now let's find the discriminant for \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since the discriminant equals 13 (which is greater than zero) , this means there are two real solutions. Remember if the discriminant is greater than zero, then the quadratic will have two real solutions.\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |