document.write( "Question 119491: A quadratic function h(x) has zeros at 4 and -3 and a y intercept of -12. The function h(x) is translated -3 units on the x axis. Which of the following equations represents g(x), the transformed h(x)?\r
\n" );
document.write( "\n" );
document.write( "a. g(x) = x^2 - 5x\r
\n" );
document.write( "\n" );
document.write( "b. g(x) = x^2 + 7x\r
\n" );
document.write( "\n" );
document.write( "c. g(x) = x^2 -x -15\r
\n" );
document.write( "\n" );
document.write( "d. g(x) = x^2 + 5x - 6 \n" );
document.write( "
Algebra.Com's Answer #87546 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! A quadratic function h(x) has zeros at 4 and -3 and a y intercept of -12. The function h(x) is translated -3 units on the x axis. Which of the following equations represents g(x), the transformed h(x)? \n" ); document.write( "------------ \n" ); document.write( "Find the equation of the quadratic before it is transformed: \n" ); document.write( "y = a(x-4)(x+3) \n" ); document.write( "Substitute (0,-12) to find \"a\" \n" ); document.write( "-12 = a(0-4)(0+3) \n" ); document.write( "-12 = -12a \n" ); document.write( "a = 1 \n" ); document.write( "------------ \n" ); document.write( "Original equation is y = x^2-x-12 \n" ); document.write( "---------------- \n" ); document.write( "To translate -3 on the x-axis substitute (x+3) for x to get \n" ); document.write( "the new equation: \n" ); document.write( "y = (x+3)^2-(x+3)-12 \n" ); document.write( "y = x^2+6x+9-x-3-12 \n" ); document.write( "y = x^2+5x-6 \n" ); document.write( "----------------- \n" ); document.write( "Graph the two equations to see the effect of the translation: \n" ); document.write( " \n" ); document.write( "==================== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |