document.write( "Question 1182225: Can the converse of the Pythagorean theorem determine which triangle with the given three side lengths is a right triangle.\r
\n" );
document.write( "\n" );
document.write( "16,21,24\r
\n" );
document.write( "\n" );
document.write( "4,9,12\r
\n" );
document.write( "\n" );
document.write( "20,21,29\r
\n" );
document.write( "\n" );
document.write( "5,12,14 \n" );
document.write( "
Algebra.Com's Answer #853566 by ikleyn(53615) You can put this solution on YOUR website! . \n" ); document.write( "Can the converse of the Pythagorean theorem determine which triangle \n" ); document.write( "with the given three side lengths is a right triangle. \n" ); document.write( "(a) 16,21,24 \n" ); document.write( "(b) 4,9,12 \n" ); document.write( "(c) 20,21,29 \n" ); document.write( "(d) 5,12,14 \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Yes, it can.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Regarding this concrete problem, the most part of options (a) - (d) can be analyzed MENTALLY, \n" ); document.write( "without making real calculations.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "(a) We want to check if \r\n" ); document.write( "\r\n" ); document.write( " 16^2 + 21^2 = 24^2.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " In this hypothetical equality, two terms, 16^2 and 24^2, are even integer numbers, while 21^2 \r\n" ); document.write( " is odd integer number. Hence, this equality is not possible - this triangle is not a right triangle.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "(b) We want to check if \r\n" ); document.write( "\r\n" ); document.write( " 4^2 + 9^2 = 12^2.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " In this hypothetical equality, two terms, 4^2 and 12^2, are even integer numbers, while 9^2 \r\n" ); document.write( " is odd integer number. Hence, this equality is not possible - this triangle is not a right triangle.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "(d) We want to check if \r\n" ); document.write( "\r\n" ); document.write( " 5^2 + 12^2 = 14^2.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " In this hypothetical equality, two terms, 12^2 and 14^2, are even integer numbers, while 5^2 \r\n" ); document.write( " is odd integer number. Hence, this equality is not possible - this triangle is not a right triangle.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "(c) We want to check if \r\n" ); document.write( "\r\n" ); document.write( " 20^2 + 21^2 = 29^2.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " In this case, this reasoning with odd-even numbers does not work, so we should check it performing \r\n" ); document.write( " direct explicit computation.\r\n" ); document.write( "\r\n" ); document.write( " Left side is 20^2 + 21^2 = 400+ 441 = 841. Right side is 29^2 = (30-1)^2 = 900 - 2*30 + 1 = 841.\r\n" ); document.write( "\r\n" ); document.write( " Both sides are equal - hence, this triangle is a right-angled triangle.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved MENTALLY, from the beginning to the end !\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |