document.write( "Question 1164909: i have been having a hard time answering this rules of inference and rules of replacement, can you help me answer this?
\n" );
document.write( "1) ﬢ[P→ﬢ(Q۸R)]
\n" );
document.write( "ﬢ[P→ﬢ
\n" );
document.write( "________________
\n" );
document.write( " ∴P۸(Q۸R)\r
\n" );
document.write( "\n" );
document.write( "2) 1. (P۷Q)→(R۸S)
\n" );
document.write( " 2. P
\n" );
document.write( "_________________
\n" );
document.write( " ∴ R\r
\n" );
document.write( "\n" );
document.write( "3) 1. (P۷Q) ۷ ﬢR
\n" );
document.write( " 2. ﬢP ۸ ﬢQ
\n" );
document.write( "__________________
\n" );
document.write( " ∴ﬢR ۷ S\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #853504 by CPhill(2189) You can put this solution on YOUR website! Rules of inference and replacement can feel like a complex puzzle at first, but once you identify the \"shape\" of the statements, the rules become much clearer. Here are the step-by-step proofs for your three problems.\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### 1) Prove: \r \n" ); document.write( "\n" ); document.write( "**Given:** \r \n" ); document.write( "\n" ); document.write( "| Step | Statement | Rule Used | \n" ); document.write( "| --- | --- | --- | \n" ); document.write( "| 1 | | Premise | \n" ); document.write( "| 2 | | **Material Implication (Impl)** on 1 | \n" ); document.write( "| 3 | | **De Morgan's (DM)** on 2 | \n" ); document.write( "| 4 | | **Double Negation (DN)** on 3 |\r \n" ); document.write( "\n" ); document.write( "**Explanation:** To break into a negated conditional, we first turn the \"if-then\" into an \"or\" statement, then use De Morgan's to distribute the negation.\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### 2) Prove: \r \n" ); document.write( "\n" ); document.write( "**Given:** 1. \n" ); document.write( "2. \r \n" ); document.write( "\n" ); document.write( "| Step | Statement | Rule Used | \n" ); document.write( "| --- | --- | --- | \n" ); document.write( "| 1 | | Premise | \n" ); document.write( "| 2 | | Premise | \n" ); document.write( "| 3 | | **Addition (Add)** on 2 | \n" ); document.write( "| 4 | | **Modus Ponens (MP)** on 1, 3 | \n" ); document.write( "| 5 | | **Simplification (Simp)** on 4 |\r \n" ); document.write( "\n" ); document.write( "**Explanation:** Since we have , we can \"add\" anything to it using an \"or\" statement. This satisfies the left side of the conditional in Step 1, allowing us to extract the right side.\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### 3) Prove: \r \n" ); document.write( "\n" ); document.write( "**Given:**\r \n" ); document.write( "\n" ); document.write( "1. \n" ); document.write( "2. \r \n" ); document.write( "\n" ); document.write( "| Step | Statement | Rule Used | \n" ); document.write( "| --- | --- | --- | \n" ); document.write( "| 1 | | Premise | \n" ); document.write( "| 2 | | Premise | \n" ); document.write( "| 3 | | **De Morgan's (DM)** on 2 | \n" ); document.write( "| 4 | | **Disjunctive Syllogism (DS)** on 1, 3 | \n" ); document.write( "| 5 | | **Addition (Add)** on 4 |\r \n" ); document.write( "\n" ); document.write( "**Explanation:** In Step 3, we used De Morgan's to show that neither nor is true. This contradicts the first part of Premise 1, which forces to be true. Once we have , we can use Addition to add any variable (in this case, ).\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### Logic Tool Reference\r \n" ); document.write( "\n" ); document.write( "A helpful tip for these is to always look at your **Conclusion** first. If it has a \"\" (like in problem 3), you often only need to find one side of it and use **Addition**.\r \n" ); document.write( "\n" ); document.write( "Would you like to try another set, or should we go deeper into how **De Morgan's Law** works? \n" ); document.write( " |