document.write( "Question 764376: 9x to the fourth power minus 25x to the second power plus 16 is equal to zero \n" ); document.write( "
Algebra.Com's Answer #853450 by MathTherapy(10719)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "9x to the fourth power minus 25x to the second power plus 16 is equal to zero\r\n" );
document.write( "\r\n" );
document.write( "While the other person's solutions/roots are correct, I don't see any sense in the method that he/she used to get them!!\r\n" );
document.write( "\r\n" );
document.write( "                 \"9x%5E4+-+25x%5E2+%2B+16+=+0\"\r\n" );
document.write( "            \"9x%5E4+-+9x%5E2+-+16x%5E2+%2B+16+=+0\" ----- Substituting \"matrix%281%2C3%2C+-+9x%5E2+-+16x%5E2%2C+for%2C+-+25x%5E2%29\"\r\n" );
document.write( "        \"9x%5E2%28x%5E2+-+1%29+-+16%28x%5E2+-+1%29+=+0\" ----- Factoring out GCF for binomials \"9x%5E4+-+9x%5E2\" and \"16x%5E2+%2B+16\"\r\n" );
document.write( "             \"%289x%5E2+-+16%29%28x%5E2+-+1%29+=+0\" \r\n" );
document.write( "(3x - 4)(3x + 4)(x - 1)(x + 1) = 0 ----- Factorizing each binomial\r\n" );
document.write( "(3x - 4) = 0 ; 3x + 4 = 0 ; x - 1 = 0 ; x + 1 = 0 ----- Setting each factor equal to 0\r\n" );
document.write( "              
\n" ); document.write( "
\n" );