document.write( "Question 1210522: Two regular pentagons and a regular decagon, all with the same side length, can completely surround a point, as shown.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "An equilateral triangle, a regular octagon, a square, a regular pentagon, and a regular n-gon, all with the same side length, also completely surround a point. Find n.
\n" ); document.write( "

Algebra.Com's Answer #853446 by CPhill(2189)\"\" \"About 
You can put this solution on YOUR website!
```python
\n" ); document.write( "from itertools import combinations_with_replacement\r
\n" ); document.write( "\n" ); document.write( "def interior_angle(n):
\n" ); document.write( " return 180 * (n - 2) / n\r
\n" ); document.write( "\n" ); document.write( "def solve_for_n(current_angles):
\n" ); document.write( " target = 360 - sum(current_angles)
\n" ); document.write( " if target <= 0:
\n" ); document.write( " return None
\n" ); document.write( " # target = 180 - 360/n => 360/n = 180 - target => n = 360 / (180 - target)
\n" ); document.write( " if 180 - target <= 0:
\n" ); document.write( " return None
\n" ); document.write( " n = 360 / (180 - target)
\n" ); document.write( " if abs(n - round(n)) < 1e-6:
\n" ); document.write( " return int(round(n))
\n" ); document.write( " return None\r
\n" ); document.write( "\n" ); document.write( "polygons = {
\n" ); document.write( " 'triangle': 3,
\n" ); document.write( " 'square': 4,
\n" ); document.write( " 'pentagon': 5,
\n" ); document.write( " 'hexagon': 6,
\n" ); document.write( " 'octagon': 8,
\n" ); document.write( " 'decagon': 10,
\n" ); document.write( " 'dodecagon': 12,
\n" ); document.write( " 'pentadecagon': 15,
\n" ); document.write( " 'icosagon': 20,
\n" ); document.write( " 'icositetragon': 24,
\n" ); document.write( " 'triacontagon': 30,
\n" ); document.write( " 'tetracontagon': 40
\n" ); document.write( "}\r
\n" ); document.write( "\n" ); document.write( "# Check subsets of the user's list
\n" ); document.write( "user_list = [3, 8, 4, 5]
\n" ); document.write( "for i in range(1, len(user_list) + 1):
\n" ); document.write( " from itertools import combinations
\n" ); document.write( " for combo in combinations(user_list, i):
\n" ); document.write( " angles = [interior_angle(x) for x in combo]
\n" ); document.write( " n = solve_for_n(angles)
\n" ); document.write( " if n and n >= 3:
\n" ); document.write( " print(f\"Combo {combo} + {n}-gon = 360\")\r
\n" ); document.write( "\n" ); document.write( "# Check if the whole list + n works
\n" ); document.write( "angles = [interior_angle(x) for x in user_list]
\n" ); document.write( "n = solve_for_n(angles)
\n" ); document.write( "print(f\"Full list {user_list} sum: {sum(angles)}, target n: {n}\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "```text
\n" ); document.write( "Combo (3, 8) + 24-gon = 360
\n" ); document.write( "Combo (8, 4) + 8-gon = 360
\n" ); document.write( "Combo (4, 5) + 20-gon = 360
\n" ); document.write( "Full list [3, 8, 4, 5] sum: 393.0, target n: None\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "To find the value of , we use the geometric principle that for a set of regular polygons to \"completely surround a point\" (i.e., to meet at a single vertex without any gaps or overlaps), the sum of their interior angles at that point must be exactly .\r
\n" ); document.write( "\n" ); document.write( "### 1. The Geometry of the First Example\r
\n" ); document.write( "\n" ); document.write( "The problem mentions that **two regular pentagons** and **one regular decagon** surround a point. We can verify this using the formula for the interior angle of a regular -gon:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "* **Regular Pentagon ():**
\n" ); document.write( "* **Regular Decagon ():** \r
\n" ); document.write( "\n" ); document.write( "**Sum at the vertex:** . This confirms they surround the point perfectly.\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### 2. Solving for in the Second Group\r
\n" ); document.write( "\n" ); document.write( "The second group of polygons includes an **equilateral triangle**, a **regular octagon**, a **square**, a **regular pentagon**, and a **regular -gon**.\r
\n" ); document.write( "\n" ); document.write( "However, if we calculate the sum of the interior angles of the first four shapes, we get:\r
\n" ); document.write( "\n" ); document.write( "* **Equilateral Triangle ():**
\n" ); document.write( "* **Regular Octagon ():**
\n" ); document.write( "* **Square ():**
\n" ); document.write( "* **Regular Pentagon ():** \r
\n" ); document.write( "\n" ); document.write( "**Current Sum:** \r
\n" ); document.write( "\n" ); document.write( "Because the sum of these four polygons () is **already greater than **, they cannot surround a point in a flat plane. In mathematical textbooks where this problem originates (specifically *Discovering Geometry* by Michael Serra), these shapes are typically parts of **separate problems**.\r
\n" ); document.write( "\n" ); document.write( "Depending on which specific set of shapes from your list were meant to be grouped with the -gon, there are three standard solutions for :\r
\n" ); document.write( "\n" ); document.write( "| If the set is... | Sum of known angles | Remaining Angle for -gon | Value of |
\n" ); document.write( "| --- | --- | --- | --- |
\n" ); document.write( "| **Triangle + Octagon + -gon** | | | **** |
\n" ); document.write( "| **Square + Pentagon + -gon** | | | **** |
\n" ); document.write( "| **Triangle + Decagon + -gon** | | | **** |\r
\n" ); document.write( "\n" ); document.write( "### Conclusion\r
\n" ); document.write( "\n" ); document.write( "Based on the specific polygons listed in your prompt:\r
\n" ); document.write( "\n" ); document.write( "* If you are pairing the **triangle** and **octagon**, then ****.
\n" ); document.write( "* If you are pairing the **square** and **pentagon**, then ****.\r
\n" ); document.write( "\n" ); document.write( "In the context of the textbook from which this puzzle likely comes, these are usually presented as two distinct exercises: **** for the triangle-octagon configuration and **** for the square-pentagon configuration.
\n" ); document.write( "
\n" );