document.write( "Question 1165124: g={(-7,1)(-4,5)(1,-1)(7,3)}
\n" );
document.write( "h(x)=4x-9
\n" );
document.write( "Find the following.
\n" );
document.write( "g^-1(1)=
\n" );
document.write( "h^-1(x)=
\n" );
document.write( "(h^-1∘h)(1)= \n" );
document.write( "
Algebra.Com's Answer #853115 by CPhill(2138) You can put this solution on YOUR website! Here are the solutions for the inverse function problems.\r \n" ); document.write( "\n" ); document.write( "## 1. Find $g^{-1}(1)$\r \n" ); document.write( "\n" ); document.write( "The function $g$ is defined by a set of ordered pairs: \n" ); document.write( "$$g = \{(-7, 1), (-4, 5), (1, -1), (7, 3)\}$$\r \n" ); document.write( "\n" ); document.write( "The inverse function, $g^{-1}$, reverses the ordered pairs: if $(a, b)$ is in $g$, then $(b, a)$ is in $g^{-1}$. \n" ); document.write( "$$g^{-1} = \{(1, -7), (5, -4), (-1, 1), (3, 7)\}$$\r \n" ); document.write( "\n" ); document.write( "To find $g^{-1}(1)$, look for the pair in $g^{-1}$ where the input (x-value) is 1. \n" ); document.write( "The pair is $(1, -7)$.\r \n" ); document.write( "\n" ); document.write( "$$\mathbf{g^{-1}(1) = -7}$$\r \n" ); document.write( "\n" ); document.write( "*Alternatively, we look for the output (y-value) of 1 in the original function $g$. Since $g(-7) = 1$, then $g^{-1}(1) = -7$.*\r \n" ); document.write( "\n" ); document.write( "## 2. Find $h^{-1}(x)$\r \n" ); document.write( "\n" ); document.write( "The function $h(x)$ is given by: \n" ); document.write( "$$h(x) = 4x - 9$$\r \n" ); document.write( "\n" ); document.write( "To find the inverse function, $h^{-1}(x)$: \n" ); document.write( "1. **Replace $h(x)$ with $y$**: \n" ); document.write( " $$y = 4x - 9$$ \n" ); document.write( "2. **Swap $x$ and $y$**: \n" ); document.write( " $$x = 4y - 9$$ \n" ); document.write( "3. **Solve for $y$**: \n" ); document.write( " $$x + 9 = 4y$$ \n" ); document.write( " $$y = \frac{x + 9}{4}$$ \n" ); document.write( "4. **Replace $y$ with $h^{-1}(x)$**:\r \n" ); document.write( "\n" ); document.write( "$$\mathbf{h^{-1}(x) = \frac{x + 9}{4}}$$\r \n" ); document.write( "\n" ); document.write( "## 3. Find $(h^{-1} \circ h)(1)$\r \n" ); document.write( "\n" ); document.write( "The composition $(h^{-1} \circ h)(x)$ is defined as $h^{-1}(h(x))$.\r \n" ); document.write( "\n" ); document.write( "Since $h(x)$ and $h^{-1}(x)$ are inverses of each other, their composition always returns the original input, $x$, for any value in the domain.\r \n" ); document.write( "\n" ); document.write( "$$(h^{-1} \circ h)(x) = x$$\r \n" ); document.write( "\n" ); document.write( "Therefore, for the input $x=1$: \n" ); document.write( "$$(h^{-1} \circ h)(1) = 1$$\r \n" ); document.write( "\n" ); document.write( "*Alternatively, solving step-by-step:* \n" ); document.write( "1. **Find $h(1)$**: \n" ); document.write( " $$h(1) = 4(1) - 9 = 4 - 9 = -5$$ \n" ); document.write( "2. **Find $h^{-1}(h(1))$, which is $h^{-1}(-5)$**: \n" ); document.write( " $$h^{-1}(-5) = \frac{(-5) + 9}{4} = \frac{4}{4} = 1$$\r \n" ); document.write( "\n" ); document.write( "$$\mathbf{(h^{-1} \circ h)(1) = 1}$$ \n" ); document.write( " |