document.write( "Question 1165192: Work out the next 5 terms in the number sequences below and explain your calculation using 'n' as your first term; e.g.n+1,n+2,n+3,etc:\r
\n" );
document.write( "\n" );
document.write( "a. 297;290;276;255;.....\r
\n" );
document.write( "\n" );
document.write( "b. 1;10;100;.....\r
\n" );
document.write( "\n" );
document.write( "c. 3;9;81;.....\r
\n" );
document.write( "\n" );
document.write( "d. 24;25;27;30;..... \n" );
document.write( "
Algebra.Com's Answer #853111 by CPhill(2138) You can put this solution on YOUR website! Here are the next 5 terms for each number sequence, along with the explanation of the calculation using a term-to-term rule based on its position in the sequence, $n$.\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## a. 297; 290; 276; 255; **227; 192; 150; 101; 45**\r \n" ); document.write( "\n" ); document.write( "### Analysis: \n" ); document.write( "This sequence is based on a decreasing difference that increases by a fixed amount each time (a quadratic sequence).\r \n" ); document.write( "\n" ); document.write( "| Term ($T_k$) | Value | Difference ($\Delta_1$) | Second Difference ($\Delta_2$) | \n" ); document.write( "| :---: | :---: | :---: | :---: | \n" ); document.write( "| $T_1$ | 297 | - | - | \n" ); document.write( "| $T_2$ | 290 | -7 | - | \n" ); document.write( "| $T_3$ | 276 | -14 | **-7** | \n" ); document.write( "| $T_4$ | 255 | -21 | **-7** | \n" ); document.write( "| $T_5$ | **227** | -28 | **-7** | \n" ); document.write( "| $T_6$ | **192** | -35 | **-7** | \n" ); document.write( "| $T_7$ | **150** | -42 | **-7** | \n" ); document.write( "| $T_8$ | **101** | -49 | **-7** | \n" ); document.write( "| $T_9$ | **45** | -56 | **-7** |\r \n" ); document.write( "\n" ); document.write( "### Next 5 Terms: \n" ); document.write( "227, 192, 150, 101, 45\r \n" ); document.write( "\n" ); document.write( "### Term-to-Term Rule: \n" ); document.write( "The difference decreases by 7 each time, starting with 7. \n" ); document.write( "* Next term ($n+1$): **$n - 28$** \n" ); document.write( "* $n+2$: **$(n-28) - 35$** \n" ); document.write( "* $n+3$: **$(n-28-35) - 42$** \n" ); document.write( "* ...and so on.\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## b. 1; 10; 100; **1,000; 10,000; 100,000; 1,000,000; 10,000,000**\r \n" ); document.write( "\n" ); document.write( "### Analysis: \n" ); document.write( "This is a geometric sequence where each term is 10 times the previous term.\r \n" ); document.write( "\n" ); document.write( "### Next 5 Terms: \n" ); document.write( "1,000, 10,000, 100,000, 1,000,000, 10,000,000\r \n" ); document.write( "\n" ); document.write( "### Term-to-Term Rule: \n" ); document.write( "The next term is the previous term multiplied by 10. \n" ); document.write( "* Next term ($n+1$): **$n \times 10$** \n" ); document.write( "* $n+2$: **$(n \times 10) \times 10$** \n" ); document.write( "* $n+3$: **$(n \times 10 \times 10) \times 10$** \n" ); document.write( "* ...and so on.\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## c. 3; 9; 81; **6,561; 43,046,721; $1.85 \times 10^{15}$; $3.40 \times 10^{30}$; $1.15 \times 10^{61}$**\r \n" ); document.write( "\n" ); document.write( "### Analysis: \n" ); document.write( "This sequence is generated by squaring the previous term.\r \n" ); document.write( "\n" ); document.write( "* $3^2 = 9$ \n" ); document.write( "* $9^2 = 81$ \n" ); document.write( "* $81^2 = 6,561$\r \n" ); document.write( "\n" ); document.write( "### Next 5 Terms: \n" ); document.write( "1. $81^2 = \mathbf{6,561}$ \n" ); document.write( "2. $6,561^2 = \mathbf{43,046,721}$ \n" ); document.write( "3. $43,046,721^2 = \mathbf{1,853,020,188,851,841} \quad (\approx 1.85 \times 10^{15})$ \n" ); document.write( "4. $(\approx 1.85 \times 10^{15})^2 \approx \mathbf{3.43 \times 10^{30}}$ \n" ); document.write( "5. $(\approx 3.43 \times 10^{30})^2 \approx \mathbf{1.17 \times 10^{61}}$\r \n" ); document.write( "\n" ); document.write( "### Term-to-Term Rule: \n" ); document.write( "The next term is the square of the previous term. \n" ); document.write( "* Next term ($n+1$): **$n^2$** \n" ); document.write( "* $n+2$: **$(n^2)^2 = n^4$** \n" ); document.write( "* $n+3$: **$((n^2)^2)^2 = n^8$** \n" ); document.write( "* ...and so on.\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## d. 24; 25; 27; 30; **34; 39; 45; 52; 60**\r \n" ); document.write( "\n" ); document.write( "### Analysis: \n" ); document.write( "This sequence is based on an increasing difference (an arithmetic progression of differences).\r \n" ); document.write( "\n" ); document.write( "| Term ($T_k$) | Value | Difference ($\Delta_1$) | Second Difference ($\Delta_2$) | \n" ); document.write( "| :---: | :---: | :---: | :---: | \n" ); document.write( "| $T_1$ | 24 | - | - | \n" ); document.write( "| $T_2$ | 25 | +1 | - | \n" ); document.write( "| $T_3$ | 27 | +2 | **+1** | \n" ); document.write( "| $T_4$ | 30 | +3 | **+1** | \n" ); document.write( "| $T_5$ | **34** | +4 | **+1** | \n" ); document.write( "| $T_6$ | **39** | +5 | **+1** | \n" ); document.write( "| $T_7$ | **45** | +6 | **+1** | \n" ); document.write( "| $T_8$ | **52** | +7 | **+1** | \n" ); document.write( "| $T_9$ | **60** | +8 | **+1** |\r \n" ); document.write( "\n" ); document.write( "### Next 5 Terms: \n" ); document.write( "34, 39, 45, 52, 60\r \n" ); document.write( "\n" ); document.write( "### Term-to-Term Rule: \n" ); document.write( "The difference increases by 1 each time, starting with 1. \n" ); document.write( "* Next term ($n+1$): **$n + 4$** \n" ); document.write( "* $n+2$: **$(n+4) + 5$** \n" ); document.write( "* $n+3$: **$(n+4+5) + 6$** \n" ); document.write( "* ...and so on. \n" ); document.write( " |