document.write( "Question 1165309: Finicky-Cat Gourmet Pet Food makes organic cat food and sells them in 2 kg bags. The company has annual fixed costs of $150,000 and variable costs of $4 per bag. Finicky-Cat sells each bag for $10. Production capacity is 50,000 bags per year.
\n" ); document.write( "A.) Find the revenue and cost equation.
\n" ); document.write( "B.) How many bags of cat food does the company have to sell to break even?
\n" ); document.write( "I. What are total sales at the breakeven point?
\n" ); document.write( "II. What is the percent capacity at the breakeven point?
\n" ); document.write( "C.) The company anticipates that will be able to make and sell 40,000 bags of cat food this year. What will it cost to produce these 40,000 bags?
\n" ); document.write( "D.)Graph the cost equation and the revenue equation on graph paper. Graph from 0-50000 bags.
\n" ); document.write( "E.) Finicky-Cat wants to increase its selling price from the current $10 so that it could make a profit of $150,000 from selling 40,000 bags of cat food. What price must they charge?
\n" ); document.write( "

Algebra.Com's Answer #853105 by CPhill(2138)\"\" \"About 
You can put this solution on YOUR website!
This is a classic Cost-Volume-Profit (CVP) analysis problem. I will first use the code interpreter to perform the necessary calculations for accuracy, and then present the step-by-step solution.\r
\n" ); document.write( "\n" ); document.write( "Here is the information provided:\r
\n" ); document.write( "\n" ); document.write( " * **Fixed Costs ($F$):** $\$150,000$
\n" ); document.write( " * **Variable Cost per Bag ($V$):** $\$4$
\n" ); document.write( " * **Selling Price per Bag ($P$):** $\$10$
\n" ); document.write( " * **Production Capacity ($C$):** $50,000$ bags
\n" ); document.write( " * **Target Sales ($Q_T$):** $40,000$ bags (for parts C and E)
\n" ); document.write( " * **Target Profit ($\text{Profit}_T$):** $\$150,000$ (for part E)\r
\n" ); document.write( "\n" ); document.write( "Let $Q$ be the number of bags of cat food.\r
\n" ); document.write( "\n" ); document.write( "```python?code_reference&code_event_index=2
\n" ); document.write( "import numpy as np
\n" ); document.write( "import matplotlib.pyplot as plt\r
\n" ); document.write( "\n" ); document.write( "# --- Given Data ---
\n" ); document.write( "F = 150000 # Fixed Costs
\n" ); document.write( "V = 4 # Variable Cost per Bag
\n" ); document.write( "P = 10 # Selling Price per Bag
\n" ); document.write( "Capacity = 50000
\n" ); document.write( "Q_anticipated = 40000
\n" ); document.write( "Target_Profit = 150000\r
\n" ); document.write( "\n" ); document.write( "# --- Part A: Revenue and Cost Equations ---
\n" ); document.write( "# R(Q) = P * Q
\n" ); document.write( "# C(Q) = F + V * Q\r
\n" ); document.write( "\n" ); document.write( "# --- Part B: Breakeven Analysis ---
\n" ); document.write( "# Breakeven occurs when R(Q_BE) = C(Q_BE)
\n" ); document.write( "# P * Q_BE = F + V * Q_BE
\n" ); document.write( "# Q_BE * (P - V) = F
\n" ); document.write( "Q_BE = F / (P - V)\r
\n" ); document.write( "\n" ); document.write( "# B.I: Total Sales at Breakeven
\n" ); document.write( "Sales_BE = P * Q_BE\r
\n" ); document.write( "\n" ); document.write( "# B.II: Percent Capacity at Breakeven
\n" ); document.write( "Percent_Capacity_BE = (Q_BE / Capacity) * 100\r
\n" ); document.write( "\n" ); document.write( "# --- Part C: Cost to produce 40,000 bags ---
\n" ); document.write( "Cost_40K = F + V * Q_anticipated\r
\n" ); document.write( "\n" ); document.write( "# --- Part E: Target Price Calculation ---
\n" ); document.write( "# Target Profit = (P_new * Q_T) - (F + V * Q_T)
\n" ); document.write( "# Target Profit + F + V * Q_T = P_new * Q_T
\n" ); document.write( "# P_new = (Target Profit + F + V * Q_T) / Q_T
\n" ); document.write( "P_new = (Target_Profit + F + V * Q_anticipated) / Q_anticipated\r
\n" ); document.write( "\n" ); document.write( "# --- Part D: Graphing Data ---
\n" ); document.write( "Q_range = np.arange(0, Capacity + 1, 10000) # x-axis range
\n" ); document.write( "R_values = P * Q_range
\n" ); document.write( "C_values = F + V * Q_range\r
\n" ); document.write( "\n" ); document.write( "# Plotting
\n" ); document.write( "plt.figure(figsize=(10, 6))
\n" ); document.write( "plt.plot(Q_range, R_values, label='Revenue R(Q) = 10Q', color='green', linewidth=2)
\n" ); document.write( "plt.plot(Q_range, C_values, label='Cost C(Q) = 150,000 + 4Q', color='red', linewidth=2)
\n" ); document.write( "plt.scatter(Q_BE, Sales_BE, color='blue', zorder=5, label=f'Breakeven ({Q_BE:.0f}, {Sales_BE:.2f})')
\n" ); document.write( "plt.axvline(Q_BE, color='blue', linestyle='--', linewidth=0.8)
\n" ); document.write( "plt.axhline(Sales_BE, color='blue', linestyle='--', linewidth=0.8)\r
\n" ); document.write( "\n" ); document.write( "plt.title('Cost and Revenue Analysis (Dunder Mifflin)')
\n" ); document.write( "plt.xlabel('Quantity (Q) in Bags')
\n" ); document.write( "plt.ylabel('Amount in Dollars ($)')
\n" ); document.write( "plt.legend()
\n" ); document.write( "plt.grid(True, linestyle='--')
\n" ); document.write( "plt.ticklabel_format( DISABLED_style= 'plain', axis='y') # Ensure y-axis labels are not in scientific notation
\n" ); document.write( "plt.xlim(0, Capacity)
\n" ); document.write( "plt.ylim(0, max(R_values.max(), C_values.max()) * 1.1)
\n" ); document.write( "plt.savefig('cost_revenue_graph.png')\r
\n" ); document.write( "\n" ); document.write( "print(f\"Q_BE: {Q_BE}\")
\n" ); document.write( "print(f\"Sales_BE: {Sales_BE}\")
\n" ); document.write( "print(f\"Percent_Capacity_BE: {Percent_Capacity_BE}\")
\n" ); document.write( "print(f\"Cost_40K: {Cost_40K}\")
\n" ); document.write( "print(f\"P_new: {P_new}\")\r
\n" ); document.write( "\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "```text?code_stdout&code_event_index=2
\n" ); document.write( "Q_BE: 25000.0
\n" ); document.write( "Sales_BE: 250000.0
\n" ); document.write( "Percent_Capacity_BE: 50.0
\n" ); document.write( "Cost_40K: 310000
\n" ); document.write( "P_new: 11.5\r
\n" ); document.write( "\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "[image-tag: code-generated-image-0-1765591087689332374]\r
\n" ); document.write( "\n" ); document.write( "Here are the solutions to the Cost-Volume-Profit analysis questions:\r
\n" ); document.write( "\n" ); document.write( "## A.) Find the revenue and cost equation.\r
\n" ); document.write( "\n" ); document.write( "Let $Q$ be the number of bags of cat food sold.\r
\n" ); document.write( "\n" ); document.write( "### Revenue Equation ($R(Q)$)\r
\n" ); document.write( "\n" ); document.write( "$$R(Q) = \text{Selling Price per Bag} \times Q$$
\n" ); document.write( "$$\mathbf{R(Q) = 10Q}$$\r
\n" ); document.write( "\n" ); document.write( "### Cost Equation ($C(Q)$)\r
\n" ); document.write( "\n" ); document.write( "$$C(Q) = \text{Fixed Costs} + (\text{Variable Cost per Bag} \times Q)$$
\n" ); document.write( "$$\mathbf{C(Q) = 150,000 + 4Q}$$\r
\n" ); document.write( "\n" ); document.write( "-----\r
\n" ); document.write( "\n" ); document.write( "## B.) How many bags of cat food does the company have to sell to break even?\r
\n" ); document.write( "\n" ); document.write( "The breakeven point occurs when Total Revenue equals Total Cost ($R(Q) = C(Q)$).
\n" ); document.write( "The contribution margin per bag is $P - V = \$10 - \$4 = \$6$.\r
\n" ); document.write( "\n" ); document.write( "$$\text{Breakeven Quantity} (Q_{BE}) = \frac{\text{Fixed Costs}}{\text{Contribution Margin per Unit}}$$
\n" ); document.write( "$$Q_{BE} = \frac{150,000}{10 - 4} = \frac{150,000}{6}$$
\n" ); document.write( "$$\mathbf{Q_{BE} = 25,000 \text{ bags}}$$\r
\n" ); document.write( "\n" ); document.write( "### I. What are total sales at the breakeven point?\r
\n" ); document.write( "\n" ); document.write( "Total sales are the revenue at the breakeven quantity.
\n" ); document.write( "$$\text{Sales}_{BE} = P \times Q_{BE} = 10 \times 25,000$$
\n" ); document.write( "$$\mathbf{\text{Total Sales at Breakeven} = \$250,000}$$\r
\n" ); document.write( "\n" ); document.write( "### II. What is the percent capacity at the breakeven point?\r
\n" ); document.write( "\n" ); document.write( "$$\text{Percent Capacity} = \left(\frac{Q_{BE}}{\text{Production Capacity}}\right) \times 100\%$$
\n" ); document.write( "$$\text{Percent Capacity} = \left(\frac{25,000}{50,000}\right) \times 100\% = 0.5 \times 100\%$$
\n" ); document.write( "$$\mathbf{\text{Percent Capacity at Breakeven} = 50\%}$$\r
\n" ); document.write( "\n" ); document.write( "-----\r
\n" ); document.write( "\n" ); document.write( "## C.) The company anticipates that will be able to make and sell 40,000 bags of cat food this year. What will it cost to produce these 40,000 bags?\r
\n" ); document.write( "\n" ); document.write( "Use the Cost Equation $C(Q) = 150,000 + 4Q$ with $Q = 40,000$.\r
\n" ); document.write( "\n" ); document.write( "$$\text{Cost}_{40,000} = 150,000 + 4(40,000)$$
\n" ); document.write( "$$\text{Cost}_{40,000} = 150,000 + 160,000$$
\n" ); document.write( "$$\mathbf{\text{Total Cost} = \$310,000}$$\r
\n" ); document.write( "\n" ); document.write( "-----\r
\n" ); document.write( "\n" ); document.write( "## D.) Graph the cost equation and the revenue equation on graph paper. Graph from 0-50,000 bags.\r
\n" ); document.write( "\n" ); document.write( " * **Cost Line (Red):** Starts at the fixed cost of $\$150,000$ (the y-intercept) and increases with a slope of 4.
\n" ); document.write( " * At $Q=0$, Cost = $\$150,000$.
\n" ); document.write( " * At $Q=50,000$, Cost = $150,000 + 4(50,000) = \$350,000$.
\n" ); document.write( " * **Revenue Line (Green):** Starts at $\$0$ (the origin) and increases with a slope of 10.
\n" ); document.write( " * At $Q=50,000$, Revenue = $10(50,000) = \$500,000$.
\n" ); document.write( " * **Breakeven Point (Blue Dot):** Intersects at $Q=25,000$ bags and Revenue/Cost $=\$250,000$.\r
\n" ); document.write( "\n" ); document.write( "-----\r
\n" ); document.write( "\n" ); document.write( "## E.) Finicky-Cat wants to increase its selling price from the current $\$10$ so that it could make a profit of $\$150,000$ from selling 40,000 bags of cat food. What price must they charge?\r
\n" ); document.write( "\n" ); document.write( "We use the Profit equation: $\text{Profit} = (\text{New Price} \times Q) - \text{Total Cost}$.\r
\n" ); document.write( "\n" ); document.write( " * **Target Profit ($\text{Profit}_T$):** $\$150,000$
\n" ); document.write( " * **Target Quantity ($Q_T$):** $40,000$ bags
\n" ); document.write( " * **Total Cost at $40,000$ bags ($C_{40,000}$):** $\$310,000$ (from part C)\r
\n" ); document.write( "\n" ); document.write( "$$\text{Profit}_T = (\text{New Price} \times Q_T) - C_{40,000}$$
\n" ); document.write( "$$150,000 = (\text{New Price} \times 40,000) - 310,000$$\r
\n" ); document.write( "\n" ); document.write( "**Solve for New Price:**
\n" ); document.write( "$$\text{New Price} \times 40,000 = 150,000 + 310,000$$
\n" ); document.write( "$$\text{New Price} \times 40,000 = 460,000$$
\n" ); document.write( "$$\text{New Price} = \frac{460,000}{40,000}$$
\n" ); document.write( "$$\mathbf{\text{New Price} = \$11.50}$$
\n" ); document.write( "
\n" );