document.write( "Question 1165403: Dunder Mifflin supplies paper to corporate clients. An important client needs 1500 reams of paper.
\n" ); document.write( "Dunder Mifflin can procure the paper from several suppliers. The characteristics of the suppliers
\n" ); document.write( "are as follows:
\n" ); document.write( "Cost per ream Delivery time Reams available
\n" ); document.write( "Supplier A 3.50 5 days 200
\n" ); document.write( "Supplier B 2.00 10 days 600
\n" ); document.write( "Supplier C 6.50 15 days 600
\n" ); document.write( "Supplier D 5.00 4 days 200
\n" ); document.write( "Supplier E 4.00 6 days 200
\n" ); document.write( "When procuring the paper, Dunder Mifflin needs to ensure the following conditions are satisfied:
\n" ); document.write( "(a) The client requires that at least 500 of the 1500 reams be delivered within the next 7 days.
\n" ); document.write( "(b) In order to maintain good relations with Supplier C, Dunder Mifflin must order at least 100
\n" ); document.write( "reams from them.
\n" ); document.write( "(c) Because of a rivalry between supplier B and D, Dunder Mifflin must order at least as many
\n" ); document.write( "reams from supplier D as they do from supplier B.
\n" ); document.write( "(d) Each supplier has a limited number of reams of paper available, as shown in the table.
\n" ); document.write( "Formulate a linear optimization model to help Dunder Mifflin procure the paper at the lowest cost.
\n" ); document.write( "(You don’t need to find the optimal solution to the model you formulate.)
\n" ); document.write( "

Algebra.Com's Answer #853096 by CPhill(2138)\"\" \"About 
You can put this solution on YOUR website!
This is a classic linear programming (LP) problem. We need to define the decision variables, the objective function (minimizing cost), and the constraints based on the client and supplier requirements.\r
\n" ); document.write( "\n" ); document.write( "## 1. Decision Variables\r
\n" ); document.write( "\n" ); document.write( "Let $x_i$ be the number of reams of paper ordered from **Supplier $i$**, where $i \in \{A, B, C, D, E\}$.\r
\n" ); document.write( "\n" ); document.write( "* $x_A$: Reams ordered from Supplier A
\n" ); document.write( "* $x_B$: Reams ordered from Supplier B
\n" ); document.write( "* $x_C$: Reams ordered from Supplier C
\n" ); document.write( "* $x_D$: Reams ordered from Supplier D
\n" ); document.write( "* $x_E$: Reams ordered from Supplier E\r
\n" ); document.write( "\n" ); document.write( "Since the number of reams must be non-negative:
\n" ); document.write( "$$x_A, x_B, x_C, x_D, x_E \ge 0$$\r
\n" ); document.write( "\n" ); document.write( "## 2. Objective Function (Minimize Cost)\r
\n" ); document.write( "\n" ); document.write( "The objective is to minimize the total procurement cost. This is the sum of (Cost per Ream $\times$ Reams Ordered) for each supplier.\r
\n" ); document.write( "\n" ); document.write( "| Supplier | Cost per Ream |
\n" ); document.write( "| :---: | :---: |
\n" ); document.write( "| A | 3.50 |
\n" ); document.write( "| B | 2.00 |
\n" ); document.write( "| C | 6.50 |
\n" ); document.write( "| D | 5.00 |
\n" ); document.write( "| E | 4.00 |\r
\n" ); document.write( "\n" ); document.write( "$$\text{Minimize } Z = 3.50x_A + 2.00x_B + 6.50x_C + 5.00x_D + 4.00x_E$$\r
\n" ); document.write( "\n" ); document.write( "## 3. Constraints\r
\n" ); document.write( "\n" ); document.write( "### a) Total Demand Constraint\r
\n" ); document.write( "\n" ); document.write( "The client requires a total of 1500 reams of paper.
\n" ); document.write( "$$x_A + x_B + x_C + x_D + x_E = 1500$$\r
\n" ); document.write( "\n" ); document.write( "### b) Delivery Time Constraint (Within 7 Days)\r
\n" ); document.write( "\n" ); document.write( "The client requires at least 500 reams to be delivered within 7 days. We must identify suppliers with a delivery time $\le 7$ days: Suppliers A (5 days), D (4 days), and E (6 days).\r
\n" ); document.write( "\n" ); document.write( "$$x_A + x_D + x_E \ge 500$$\r
\n" ); document.write( "\n" ); document.write( "### c) Supplier C Relationship Constraint\r
\n" ); document.write( "\n" ); document.write( "Dunder Mifflin must order at least 100 reams from Supplier C.
\n" ); document.write( "$$x_C \ge 100$$\r
\n" ); document.write( "\n" ); document.write( "### d) Rivalry Constraint (Supplier D vs. B)\r
\n" ); document.write( "\n" ); document.write( "The order from Supplier D must be at least as many reams as the order from Supplier B.
\n" ); document.write( "$$x_D \ge x_B$$
\n" ); document.write( "This is typically written as:
\n" ); document.write( "$$x_D - x_B \ge 0$$\r
\n" ); document.write( "\n" ); document.write( "### e) Availability Constraints\r
\n" ); document.write( "\n" ); document.write( "The order from each supplier cannot exceed the reams available.\r
\n" ); document.write( "\n" ); document.write( "| Supplier | Reams Available |
\n" ); document.write( "| :---: | :---: |
\n" ); document.write( "| A | 200 |
\n" ); document.write( "| B | 600 |
\n" ); document.write( "| C | 600 |
\n" ); document.write( "| D | 200 |
\n" ); document.write( "| E | 200 |\r
\n" ); document.write( "\n" ); document.write( "$$x_A \le 200$$
\n" ); document.write( "$$x_B \le 600$$
\n" ); document.write( "$$x_C \le 600$$
\n" ); document.write( "$$x_D \le 200$$
\n" ); document.write( "$$x_E \le 200$$\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "## Linear Optimization Model Summary\r
\n" ); document.write( "\n" ); document.write( "$$\text{Minimize } Z = 3.50x_A + 2.00x_B + 6.50x_C + 5.00x_D + 4.00x_E$$\r
\n" ); document.write( "\n" ); document.write( "$$\text{Subject to:}$$
\n" ); document.write( "1. $$x_A + x_B + x_C + x_D + x_E = 1500$$ (Total Demand)
\n" ); document.write( "2. $$x_A + x_D + x_E \ge 500$$ (7-Day Delivery)
\n" ); document.write( "3. $$x_C \ge 100$$ (Supplier C Minimum)
\n" ); document.write( "4. $$x_D - x_B \ge 0$$ (Rivalry)
\n" ); document.write( "5. $$x_A \le 200$$
\n" ); document.write( "6. $$x_B \le 600$$
\n" ); document.write( "7. $$x_C \le 600$$
\n" ); document.write( "8. $$x_D \le 200$$
\n" ); document.write( "9. $$x_E \le 200$$
\n" ); document.write( "10. $$x_A, x_B, x_C, x_D, x_E \ge 0$$ (Non-negativity)
\n" ); document.write( "
\n" );