\r\n" );
document.write( "1. (a) resolve into partial fractions 2x/[(x-2)(x+5)]\r\n" );
document.write( " (b) resolve into partial fractions 1/(x^2-x)\r\n" );
document.write( "\r\n" );
document.write( "1. (a) resolve into partial fractions
\r\n" );
document.write( "The other person’s solution: A =
, and B =
, is WRONG!!\r\n" );
document.write( "\r\n" );
document.write( "
=
\r\n" );
document.write( "
---- Multiplying by LCD, (x - 2)(x + 5)\r\n" );
document.write( " 2x = A(x + 5) + B(x - 2) ---- Equating NUMERATORS, since denominators are the same\r\n" );
document.write( " 2(2) = A(2 + 5) + B(2 - 2) ---- Substituting 2 for x to determine the value of A\r\n" );
document.write( " 4 = 7A\r\n" );
document.write( "
\r\n" );
document.write( " 2(- 5) = A(- 5 + 5) + B(- 5 - 2) ---- Substituting - 5 for x to determine the value of B\r\n" );
document.write( " - 10 = - 7B\r\n" );
document.write( "
\r\n" );
document.write( " (A, B) = (
,
)\r\n" );
document.write( "\r\n" );
document.write( "Therefore,
=
=
\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "1. (b) resolve into partial fractions
\r\n" );
document.write( "\r\n" );
document.write( "Use the same concept above, to decompose this PROPER FRACTION too. \r\n" );
document.write( "\r\n" );
document.write( "Before doing so though, we FACTORIZE the denominator in
to get:
, and then:
= 
\n" );
document.write( "