document.write( "Question 1165630: g={(-4,-9),(-2,8),(4,5),(8,4)}\r
\n" );
document.write( "\n" );
document.write( "h(x)=2x-13\r
\n" );
document.write( "\n" );
document.write( "Find the following
\n" );
document.write( "g^-1(8)=
\n" );
document.write( "h^-1(x)=
\n" );
document.write( "(h∘h^-1)(-5)= \n" );
document.write( "
Algebra.Com's Answer #852955 by CPhill(2138) You can put this solution on YOUR website! This problem involves finding inverse functions and evaluating a function composition.\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## 1. Finding $g^{-1}(8)$\r \n" ); document.write( "\n" ); document.write( "The function $g$ is defined by the set of ordered pairs: \n" ); document.write( "$$g = \{(-4,-9), (-2,8), (4,5), (8,4)\}$$\r \n" ); document.write( "\n" ); document.write( "The inverse function $g^{-1}$ reverses the ordered pairs. To find $g^{-1}(8)$, we look for the pair in $g$ where the output (y-value) is 8.\r \n" ); document.write( "\n" ); document.write( "The pair in $g$ with an output of 8 is **$(-2, 8)$**.\r \n" ); document.write( "\n" ); document.write( "Therefore, the input (x-value) for $g^{-1}(8)$ is $-2$.\r \n" ); document.write( "\n" ); document.write( "$$\mathbf{g^{-1}(8) = -2}$$\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## 2. Finding $h^{-1}(x)$\r \n" ); document.write( "\n" ); document.write( "The function is $h(x) = 2x - 13$. To find the inverse, we set $y = h(x)$ and solve for $x$ in terms of $y$.\r \n" ); document.write( "\n" ); document.write( "1. Set $y = h(x)$: \n" ); document.write( " $$y = 2x - 13$$ \n" ); document.write( "2. Swap $x$ and $y$: \n" ); document.write( " $$x = 2y - 13$$ \n" ); document.write( "3. Solve for $y$: \n" ); document.write( " $$x + 13 = 2y$$ \n" ); document.write( " $$y = \frac{x + 13}{2}$$\r \n" ); document.write( "\n" ); document.write( "$$\mathbf{h^{-1}(x) = \frac{x + 13}{2}}$$\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## 3. Finding $(h \circ h^{-1})(-5)$\r \n" ); document.write( "\n" ); document.write( "The expression $(h \circ h^{-1})(-5)$ represents the composition of the function $h$ with its inverse $h^{-1}$, evaluated at $x=-5$.\r \n" ); document.write( "\n" ); document.write( "By the definition of an inverse function, when a function is composed with its inverse, the result is the identity function: \n" ); document.write( "$$(f \circ f^{-1})(x) = x$$\r \n" ); document.write( "\n" ); document.write( "Therefore, for $h(x)$:\r \n" ); document.write( "\n" ); document.write( "$$(h \circ h^{-1})(-5) = -5$$\r \n" ); document.write( "\n" ); document.write( "$$\mathbf{(h \circ h^{-1})(-5) = -5}$$ \n" ); document.write( " |