document.write( "Question 1165687: Line Quadrant
\n" ); document.write( "y = −x
\n" ); document.write( " II\r
\n" ); document.write( "\n" ); document.write( "sin θ =
\n" ); document.write( "
\n" ); document.write( "cos θ =
\n" ); document.write( "
\n" ); document.write( "tan θ =
\n" ); document.write( "
\n" ); document.write( "csc θ =
\n" ); document.write( "
\n" ); document.write( "sec θ =
\n" ); document.write( "
\n" ); document.write( "cot θ =
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #852944 by CPhill(2138)\"\" \"About 
You can put this solution on YOUR website!
The line $y = -x$ passes through Quadrant II. To find the trigonometric values for an angle $\theta$ whose terminal side lies on this line in Quadrant II, we can choose any point on that segment of the line. \r
\n" ); document.write( "\n" ); document.write( "### 1. Identify a Point $(x, y)$\r
\n" ); document.write( "\n" ); document.write( "The line is $y = -x$. For the line to be in **Quadrant II**, the $x$-coordinate must be **negative** and the $y$-coordinate must be **positive**.\r
\n" ); document.write( "\n" ); document.write( "* Let $x = -1$.
\n" ); document.write( "* Then $y = -(-1) = 1$.
\n" ); document.write( "* The point on the terminal side of the angle is $\mathbf{(-1, 1)}$.\r
\n" ); document.write( "\n" ); document.write( "### 2. Calculate the Radius ($r$)\r
\n" ); document.write( "\n" ); document.write( "The distance from the origin $(0, 0)$ to the point $(x, y)$ is $r$, calculated using the distance formula:
\n" ); document.write( "$$r = \sqrt{x^2 + y^2}$$
\n" ); document.write( "$$r = \sqrt{(-1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2}$$\r
\n" ); document.write( "\n" ); document.write( "### 3. Determine the Trigonometric Ratios\r
\n" ); document.write( "\n" ); document.write( "Using the point $(-1, 1)$ and $r=\sqrt{2}$:
\n" ); document.write( "$$
\n" ); document.write( "\sin \theta = \frac{y}{r} \quad \cos \theta = \frac{x}{r} \quad \tan \theta = \frac{y}{x}
\n" ); document.write( "$$\r
\n" ); document.write( "\n" ); document.write( "| Trigonometric Function | Ratio | Value | Rationalized Value |
\n" ); document.write( "| :---: | :---: | :---: | :---: |
\n" ); document.write( "| **$\sin \theta$** | $y/r$ | $1/\sqrt{2}$ | $\mathbf{\sqrt{2}/2}$ |
\n" ); document.write( "| **$\cos \theta$** | $x/r$ | $-1/\sqrt{2}$ | $\mathbf{-\sqrt{2}/2}$ |
\n" ); document.write( "| **$\tan \theta$** | $y/x$ | $1/(-1)$ | $\mathbf{-1}$ |
\n" ); document.write( "| **$\csc \theta$** | $r/y$ | $\sqrt{2}/1$ | $\mathbf{\sqrt{2}}$ |
\n" ); document.write( "| **$\sec \theta$** | $r/x$ | $\sqrt{2}/(-1)$ | $\mathbf{-\sqrt{2}}$ |
\n" ); document.write( "| **$\cot \theta$** | $x/y$ | $-1/1$ | $\mathbf{-1}$ |\r
\n" ); document.write( "\n" ); document.write( "***
\n" ); document.write( "*Note: The angle $\theta$ represented here is $135^\circ$ or $3\pi/4$ radians.*
\n" ); document.write( "
\n" );