document.write( "Question 1165702: Compute and interpret the correlation coefficient for the following coded data:
\n" ); document.write( "X (height) 15 18 11 19 20 9
\n" ); document.write( "Y(weight) 17 21 24 10 25 16
\n" ); document.write( "Fit a regression line Y on X and X on Y and coefficient of correlation?
\n" ); document.write( "

Algebra.Com's Answer #852943 by CPhill(2138)\"\" \"About 
You can put this solution on YOUR website!
```python?code_reference&code_event_index=2
\n" ); document.write( "import numpy as np
\n" ); document.write( "import pandas as pd
\n" ); document.write( "from scipy.stats import pearsonr, linregress\r
\n" ); document.write( "\n" ); document.write( "# Data
\n" ); document.write( "X = np.array([15, 18, 11, 19, 20, 9])
\n" ); document.write( "Y = np.array([17, 21, 24, 10, 25, 16])
\n" ); document.write( "n = len(X)\r
\n" ); document.write( "\n" ); document.write( "# 1. Compute sums for manual calculation (for verification and required components)
\n" ); document.write( "sum_X = np.sum(X)
\n" ); document.write( "sum_Y = np.sum(Y)
\n" ); document.write( "sum_X_sq = np.sum(X**2)
\n" ); document.write( "sum_Y_sq = np.sum(Y**2)
\n" ); document.write( "sum_XY = np.sum(X * Y)\r
\n" ); document.write( "\n" ); document.write( "# Calculate the covariance numerator (Num) and variance denominators (Den_X, Den_Y)
\n" ); document.write( "Num = n * sum_XY - sum_X * sum_Y
\n" ); document.write( "Den_X_sq = n * sum_X_sq - sum_X**2
\n" ); document.write( "Den_Y_sq = n * sum_Y_sq - sum_Y**2\r
\n" ); document.write( "\n" ); document.write( "# Correlation Coefficient (r)
\n" ); document.write( "r = Num / np.sqrt(Den_X_sq * Den_Y_sq)\r
\n" ); document.write( "\n" ); document.write( "# 2. Regression Line Y on X: Y = b0 + b1*X
\n" ); document.write( "b1_yx = Num / Den_X_sq
\n" ); document.write( "mean_X = np.mean(X)
\n" ); document.write( "mean_Y = np.mean(Y)
\n" ); document.write( "b0_yx = mean_Y - b1_yx * mean_X\r
\n" ); document.write( "\n" ); document.write( "# 3. Regression Line X on Y: X = b'0 + b'1*Y
\n" ); document.write( "b1_xy = Num / Den_Y_sq
\n" ); document.write( "b0_xy = mean_X - b1_xy * mean_Y\r
\n" ); document.write( "\n" ); document.write( "print(f\"n = {n}\")
\n" ); document.write( "print(f\"Sum X = {sum_X}, Sum Y = {sum_Y}\")
\n" ); document.write( "print(f\"Sum X^2 = {sum_X_sq}, Sum Y^2 = {sum_Y_sq}\")
\n" ); document.write( "print(f\"Sum XY = {sum_XY}\")
\n" ); document.write( "print(\"-\" * 30)
\n" ); document.write( "print(f\"Correlation Coefficient (r): {r}\")
\n" ); document.write( "print(f\"Regression Y on X (b1): {b1_yx}\")
\n" ); document.write( "print(f\"Regression Y on X (b0): {b0_yx}\")
\n" ); document.write( "print(f\"Regression X on Y (b'1): {b1_xy}\")
\n" ); document.write( "print(f\"Regression X on Y (b'0): {b0_xy}\")\r
\n" ); document.write( "\n" ); document.write( "# Verify r^2 = b1_yx * b1_xy
\n" ); document.write( "r_sq_check = b1_yx * b1_xy
\n" ); document.write( "print(f\"Check r^2 = b1_yx * b1_xy: {r_sq_check}\")
\n" ); document.write( "print(f\"r^2: {r**2}\")\r
\n" ); document.write( "\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "```text?code_stdout&code_event_index=2
\n" ); document.write( "n = 6
\n" ); document.write( "Sum X = 92, Sum Y = 113
\n" ); document.write( "Sum X^2 = 1512, Sum Y^2 = 2287
\n" ); document.write( "Sum XY = 1731
\n" ); document.write( "------------------------------
\n" ); document.write( "Correlation Coefficient (r): -0.013137168189865763
\n" ); document.write( "Regression Y on X (b1): -0.01644736842105263
\n" ); document.write( "Regression Y on X (b0): 19.085526315789473
\n" ); document.write( "Regression X on Y (b'1): -0.01049317943336831
\n" ); document.write( "Regression X on Y (b'0): 15.530954879328437
\n" ); document.write( "Check r^2 = b1_yx * b1_xy: 0.00017258518804882087
\n" ); document.write( "r^2: 0.0001725851880488209\r
\n" ); document.write( "\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "The computations reveal a very weak, almost non-existent, negative linear relationship between the coded height (X) and weight (Y) data.\r
\n" ); document.write( "\n" ); document.write( "-----\r
\n" ); document.write( "\n" ); document.write( "## 1\. Coefficient of Correlation ($r$)\r
\n" ); document.write( "\n" ); document.write( "The **correlation coefficient ($r$)** is calculated as:
\n" ); document.write( "$$r = \frac{n(\sum XY) - (\sum X)(\sum Y)}{\sqrt{[n(\sum X^2) - (\sum X)^2][n(\sum Y^2) - (\sum Y)^2]}}$$\r
\n" ); document.write( "\n" ); document.write( "Using the computed summary statistics:\r
\n" ); document.write( "\n" ); document.write( " * $\sum X = 92$
\n" ); document.write( " * $\sum Y = 113$
\n" ); document.write( " * $\sum XY = 1731$
\n" ); document.write( " * $n = 6$\r
\n" ); document.write( "\n" ); document.write( "$$r \approx \mathbf{-0.0131}$$\r
\n" ); document.write( "\n" ); document.write( "### Interpretation of $r$\r
\n" ); document.write( "\n" ); document.write( "The correlation coefficient $r \approx -0.0131$ indicates a **very weak, negligible negative linear relationship** between the two variables.\r
\n" ); document.write( "\n" ); document.write( " * The value is very close to $0$, which suggests there is **virtually no linear association** between the coded height (X) and weight (Y) in this sample.
\n" ); document.write( " * The negative sign means that as X (height) slightly increases, Y (weight) tends to slightly decrease, but this trend is too small to be meaningful.\r
\n" ); document.write( "\n" ); document.write( "-----\r
\n" ); document.write( "\n" ); document.write( "## 2\. Regression Line Y on X\r
\n" ); document.write( "\n" ); document.write( "The regression line used to predict Y (weight) from X (height) is $\hat{Y} = b_0 + b_1X$.\r
\n" ); document.write( "\n" ); document.write( "### Slope ($b_1$)\r
\n" ); document.write( "\n" ); document.write( "$$b_1 = \frac{n(\sum XY) - (\sum X)(\sum Y)}{n(\sum X^2) - (\sum X)^2} \approx \mathbf{-0.0164}$$\r
\n" ); document.write( "\n" ); document.write( "### Intercept ($b_0$)\r
\n" ); document.write( "\n" ); document.write( "$$b_0 = \bar{Y} - b_1\bar{X} \approx 18.8333 - (-0.0164)(15.3333) \approx \mathbf{19.0855}$$\r
\n" ); document.write( "\n" ); document.write( "The equation for the regression line Y on X is:
\n" ); document.write( "$$\mathbf{\hat{Y} = 19.0855 - 0.0164X}$$\r
\n" ); document.write( "\n" ); document.write( "-----\r
\n" ); document.write( "\n" ); document.write( "## 3\. Regression Line X on Y\r
\n" ); document.write( "\n" ); document.write( "The regression line used to predict X (height) from Y (weight) is $\hat{X} = b'_0 + b'_1Y$.\r
\n" ); document.write( "\n" ); document.write( "### Slope ($b'_1$)\r
\n" ); document.write( "\n" ); document.write( "$$b'_1 = \frac{n(\sum XY) - (\sum X)(\sum Y)}{n(\sum Y^2) - (\sum Y)^2} \approx \mathbf{-0.0105}$$\r
\n" ); document.write( "\n" ); document.write( "### Intercept ($b'_0$)\r
\n" ); document.write( "\n" ); document.write( "$$b'_0 = \bar{X} - b'_1\bar{Y} \approx 15.3333 - (-0.0105)(18.8333) \approx \mathbf{15.5310}$$\r
\n" ); document.write( "\n" ); document.write( "The equation for the regression line X on Y is:
\n" ); document.write( "$$\mathbf{\hat{X} = 15.5310 - 0.0105Y}$$
\n" ); document.write( "
\n" );