document.write( "Question 1165709: arch in an amusement park has a parabolic shape. it has a height of 74 feet and the base width of 38 feet. what is the height of the Arch 8 feet from the center? \n" ); document.write( "
Algebra.Com's Answer #852940 by CPhill(2138) You can put this solution on YOUR website! ```python?code_reference&code_event_index=2 \n" ); document.write( "# Given parameters \n" ); document.write( "H = 74 # Maximum height (feet) \n" ); document.write( "W = 38 # Base width (feet) \n" ); document.write( "x = 8 # Horizontal distance from the center (feet)\r \n" ); document.write( "\n" ); document.write( "# The parabola is defined by y = a*x^2 + H. \n" ); document.write( "# The base endpoints are at (W/2, 0) and (-W/2, 0). \n" ); document.write( "# W/2 = 38 / 2 = 19 \n" ); document.write( "# We use the point (19, 0) to find 'a'. \n" ); document.write( "# 0 = a * (19)^2 + 74 \n" ); document.write( "# a = -74 / 19^2 = -74 / 361\r \n" ); document.write( "\n" ); document.write( "# The equation of the parabola is: y = (-74/361) * x^2 + 74\r \n" ); document.write( "\n" ); document.write( "# Calculate the height (y) at x = 8 \n" ); document.write( "height = (-74 / 361) * (x**2) + H\r \n" ); document.write( "\n" ); document.write( "print(f\"Height at 8 feet from the center: {height} feet\")\r \n" ); document.write( "\n" ); document.write( "```\r \n" ); document.write( "\n" ); document.write( "```text?code_stdout&code_event_index=2 \n" ); document.write( "Height at 8 feet from the center: 60.880886426592795 feet\r \n" ); document.write( "\n" ); document.write( "```\r \n" ); document.write( "\n" ); document.write( "The height of the arch 8 feet from the center is approximately **60.88 feet**.\r \n" ); document.write( "\n" ); document.write( "Here is the step-by-step calculation:\r \n" ); document.write( "\n" ); document.write( "### 1\. Establish the Equation of the Parabola\r \n" ); document.write( "\n" ); document.write( "We model the parabolic arch using a standard coordinate system where the vertex (maximum height) is on the $y$-axis and the base is on the $x$-axis.\r \n" ); document.write( "\n" ); document.write( "The general equation for a parabola opening downward with a vertex at $(0, h)$ is: \n" ); document.write( "$$y = ax^2 + h$$\r \n" ); document.write( "\n" ); document.write( " * **Height ($h$):** $74$ feet. \n" ); document.write( " * **Base Width:** $38$ feet, meaning the arch touches the ground (where $y=0$) at $x = \pm \frac{38}{2} = \pm 19$.\r \n" ); document.write( "\n" ); document.write( "Using the point $(19, 0)$ and the vertex $h=74$: \n" ); document.write( "$$0 = a(19)^2 + 74$$ \n" ); document.write( "$$0 = 361a + 74$$ \n" ); document.write( "$$a = -\frac{74}{361}$$\r \n" ); document.write( "\n" ); document.write( "The equation for the arch is: \n" ); document.write( "$$y = -\frac{74}{361}x^2 + 74$$\r \n" ); document.write( "\n" ); document.write( "### 2\. Calculate the Height\r \n" ); document.write( "\n" ); document.write( "To find the height $y$ at a horizontal distance of $x=8$ feet from the center:\r \n" ); document.write( "\n" ); document.write( "$$y = -\frac{74}{361}(8)^2 + 74$$ \n" ); document.write( "$$y = -\frac{74}{361}(64) + 74$$ \n" ); document.write( "$$y = 74 - \frac{4736}{361}$$ \n" ); document.write( "$$y \approx 74 - 13.11911$$ \n" ); document.write( "$$y \approx 60.88088 \text{ feet}$$ \n" ); document.write( " |