document.write( "Question 1165712: For the function f(x) = tan x, show that f(x+y)
\n" );
document.write( "- f(x)= sec^2 x tan y/1-tan x tan y \n" );
document.write( "
Algebra.Com's Answer #852939 by CPhill(2138) You can put this solution on YOUR website! The equation you provided, $f(x+y) - f(x) = \frac{\sec^2 x \tan y}{1 - \tan x \tan y}$, is incorrect or requires a different approach to prove. The correct simplification for the left-hand side is generally simpler.\r \n" ); document.write( "\n" ); document.write( "Here is the correct derivation for $f(x+y) - f(x)$ and an explanation of the identity you provided.\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## 1. Correct Derivation for $f(x+y) - f(x)$\r \n" ); document.write( "\n" ); document.write( "Given $f(x) = \tan x$, the expression $f(x+y) - f(x)$ is:\r \n" ); document.write( "\n" ); document.write( "$$f(x+y) - f(x) = \tan(x+y) - \tan x$$\r \n" ); document.write( "\n" ); document.write( "Using the tangent addition formula, $\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$:\r \n" ); document.write( "\n" ); document.write( "$$\tan(x+y) - \tan x = \frac{\tan x + \tan y}{1 - \tan x \tan y} - \tan x$$\r \n" ); document.write( "\n" ); document.write( "To combine the terms, find a common denominator:\r \n" ); document.write( "\n" ); document.write( "$$\frac{\tan x + \tan y}{1 - \tan x \tan y} - \frac{\tan x (1 - \tan x \tan y)}{1 - \tan x \tan y}$$\r \n" ); document.write( "\n" ); document.write( "Combine the numerators:\r \n" ); document.write( "\n" ); document.write( "$$\frac{(\tan x + \tan y) - (\tan x - \tan^2 x \tan y)}{1 - \tan x \tan y}$$\r \n" ); document.write( "\n" ); document.write( "Distribute the negative sign in the numerator:\r \n" ); document.write( "\n" ); document.write( "$$\frac{\tan x + \tan y - \tan x + \tan^2 x \tan y}{1 - \tan x \tan y}$$\r \n" ); document.write( "\n" ); document.write( "The $\tan x$ terms cancel out:\r \n" ); document.write( "\n" ); document.write( "$$\frac{\tan y + \tan^2 x \tan y}{1 - \tan x \tan y}$$\r \n" ); document.write( "\n" ); document.write( "Factor out $\tan y$ from the numerator:\r \n" ); document.write( "\n" ); document.write( "$$\frac{\tan y (1 + \tan^2 x)}{1 - \tan x \tan y}$$\r \n" ); document.write( "\n" ); document.write( "Finally, use the Pythagorean identity $\mathbf{1 + \tan^2 x = \sec^2 x}$:\r \n" ); document.write( "\n" ); document.write( "$$f(x+y) - f(x) = \frac{\sec^2 x \tan y}{1 - \tan x \tan y}$$\r \n" ); document.write( "\n" ); document.write( "## 2. Conclusion\r \n" ); document.write( "\n" ); document.write( "The identity you asked to show, $\mathbf{f(x+y) - f(x) = \frac{\sec^2 x \tan y}{1 - \tan x \tan y}}$, is **correct**.\r \n" ); document.write( "\n" ); document.write( "Your expression: \n" ); document.write( "$$\mathbf{LHS: f(x+y) - f(x)}$$\r \n" ); document.write( "\n" ); document.write( "Your proposed result: \n" ); document.write( "$$\mathbf{RHS: \frac{\sec^2 x \tan y}{1 - \tan x \tan y}}$$\r \n" ); document.write( "\n" ); document.write( "Since the derivation of $f(x+y) - f(x)$ leads directly to $\frac{\sec^2 x \tan y}{1 - \tan x \tan y}$, the identity is proven. \n" ); document.write( " |