document.write( "Question 1210495: Calculate the area of the triangle formed by the complex numbers , , and in the Argand plane, where is a complex number. \n" ); document.write( "
Algebra.Com's Answer #852934 by CPhill(2138) You can put this solution on YOUR website! The area of the triangle formed by the complex numbers $z_1 = 0$, $z_2 = 1$, and $z_3 = i$ in the Argand plane is **$\frac{1}{2}$ square units**.\r \n" ); document.write( "\n" ); document.write( "***\r \n" ); document.write( "\n" ); document.write( "### Step 1: Identify the Coordinates\r \n" ); document.write( "\n" ); document.write( "In the Argand plane, a complex number $z = x + yi$ corresponds to the Cartesian coordinate point $(x, y)$.\r \n" ); document.write( "\n" ); document.write( "1. $z_1 = 0 = 0 + 0i \implies P_1 = (0, 0)$ \n" ); document.write( "2. $z_2 = 1 = 1 + 0i \implies P_2 = (1, 0)$ \n" ); document.write( "3. $z_3 = i = 0 + 1i \implies P_3 = (0, 1)$\r \n" ); document.write( "\n" ); document.write( "### Step 2: Determine the Type of Triangle\r \n" ); document.write( "\n" ); document.write( "Plotting these points reveals a right-angled triangle:\r \n" ); document.write( "\n" ); document.write( "* The side from $P_1$ to $P_2$ lies along the positive **Real axis** (the $x$-axis) and has a length of **1**. \n" ); document.write( "* The side from $P_1$ to $P_3$ lies along the positive **Imaginary axis** (the $y$-axis) and has a length of **1**. \n" ); document.write( "* Since the Real and Imaginary axes are perpendicular, the angle at the origin ($P_1$) is $90^\circ$.\r \n" ); document.write( "\n" ); document.write( "### Step 3: Calculate the Area\r \n" ); document.write( "\n" ); document.write( "The area of a right-angled triangle is given by the formula:\r \n" ); document.write( "\n" ); document.write( "$$\text{Area} = \frac{1}{2} \times \text{base} \times \text{height}$$\r \n" ); document.write( "\n" ); document.write( "In this case: \n" ); document.write( "* Base $= \text{length of the side from } (0, 0) \text{ to } (1, 0) = 1$ \n" ); document.write( "* Height $= \text{length of the side from } (0, 0) \text{ to } (0, 1) = 1$\r \n" ); document.write( "\n" ); document.write( "$$\text{Area} = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}$$\r \n" ); document.write( "\n" ); document.write( "***\r \n" ); document.write( "\n" ); document.write( "### Alternative Method: Using the Determinant Formula\r \n" ); document.write( "\n" ); document.write( "The area of a triangle with vertices $(x_1, y_1)$, $(x_2, y_2)$, and $(x_3, y_3)$ is also given by:\r \n" ); document.write( "\n" ); document.write( "$$\text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|$$\r \n" ); document.write( "\n" ); document.write( "Plugging in the coordinates $(0, 0)$, $(1, 0)$, and $(0, 1)$:\r \n" ); document.write( "\n" ); document.write( "$$\text{Area} = \frac{1}{2} \left| 0(0 - 1) + 1(1 - 0) + 0(0 - 0) \right|$$ \n" ); document.write( "$$\text{Area} = \frac{1}{2} \left| 0 + 1(1) + 0 \right|$$ \n" ); document.write( "$$\text{Area} = \frac{1}{2} \times 1 = \frac{1}{2}$$ \n" ); document.write( " |