document.write( "Question 1210490: The centroid of triangle ABC is G. Find BG. \n" ); document.write( "
Algebra.Com's Answer #852900 by CPhill(2138) You can put this solution on YOUR website! The length of $BG$ is $\mathbf{\frac{2\sqrt{3}}{3}}$.\r \n" ); document.write( "\n" ); document.write( "Here is the step-by-step calculation using the properties of an equilateral triangle and its centroid.\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## 1. Find the Length of the Median ($\overline{BD}$)\r \n" ); document.write( "\n" ); document.write( "In an **equilateral triangle** ($\triangle ABC$ with side length $a=2$), the median drawn from any vertex (like $B$) is also the altitude. Let $D$ be the midpoint of side $\overline{AC}$. $\overline{BD}$ is the median/altitude.\r \n" ); document.write( "\n" ); document.write( "The altitude ($h$) of an equilateral triangle with side length $a$ is given by the formula: \n" ); document.write( "$$h = \frac{a\sqrt{3}}{2}$$\r \n" ); document.write( "\n" ); document.write( "Substitute the side length $a=2$: \n" ); document.write( "$$BD = \frac{2\sqrt{3}}{2}$$ \n" ); document.write( "$$BD = \mathbf{\sqrt{3}}$$\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## 2. Find the Length of $\overline{BG}$\r \n" ); document.write( "\n" ); document.write( "The centroid ($G$) divides any median into two segments with a ratio of **2:1**. The segment connecting the vertex ($B$) to the centroid ($G$) is two-thirds ($\frac{2}{3}$) the length of the entire median ($\overline{BD}$). \r \n" ); document.write( "\n" ); document.write( "[Image of a triangle and its medial triangle with area ratio labeled]\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "$$BG = \frac{2}{3} \cdot BD$$\r \n" ); document.write( "\n" ); document.write( "Substitute the length of the median $BD = \sqrt{3}$: \n" ); document.write( "$$BG = \frac{2}{3} \cdot \sqrt{3}$$ \n" ); document.write( "$$BG = \mathbf{\frac{2\sqrt{3}}{3}}$$\r \n" ); document.write( "\n" ); document.write( "The length of $BG$ is $\frac{2\sqrt{3}}{3}$. \n" ); document.write( " |