document.write( "Question 1165857: Given the function f(x)=1/x\r
\n" ); document.write( "\n" ); document.write( "a) Write the equation g(x) after the following transformations:
\n" ); document.write( "horizontal compression by the factor 1/5 ,
\n" ); document.write( "vertical stretch by the factor 7
\n" ); document.write( "reflection in the y-axis
\n" ); document.write( "translation 10 units left and 1 unit down\r
\n" ); document.write( "\n" ); document.write( "b) State the domain and range of g(x)\r
\n" ); document.write( "\n" ); document.write( "Steps needed also
\n" ); document.write( "

Algebra.Com's Answer #852882 by CPhill(2138)\"\" \"About 
You can put this solution on YOUR website!
Here's how to determine the equation, domain, and range of $g(x)$ after the given transformations.\r
\n" ); document.write( "\n" ); document.write( "The original function is $f(x) = \frac{1}{x}$.\r
\n" ); document.write( "\n" ); document.write( "## a. Write the Equation $g(x)$\r
\n" ); document.write( "\n" ); document.write( "A transformation of a function $f(x)$ can be expressed in the form $g(x) = a \cdot f(b(x-h)) + k$, where:\r
\n" ); document.write( "\n" ); document.write( "* $|a|$ is the **vertical stretch/compression** factor. (A negative $a$ implies a reflection across the x-axis.)
\n" ); document.write( "* $|1/b|$ is the **horizontal stretch/compression** factor. (A negative $b$ implies a reflection across the y-axis.)
\n" ); document.write( "* $h$ is the **horizontal shift** (translation).
\n" ); document.write( "* $k$ is the **vertical shift** (translation).\r
\n" ); document.write( "\n" ); document.write( "### Step 1: Apply Horizontal Compression and Reflection in the $y$-axis\r
\n" ); document.write( "\n" ); document.write( "* **Horizontal compression by factor $1/5$** means $b = 5$.
\n" ); document.write( "* **Reflection in the $y$-axis** means $b$ is negative, so $b = -5$.\r
\n" ); document.write( "\n" ); document.write( "$$f(x) \to f(-5x) = \frac{1}{-5x}$$\r
\n" ); document.write( "\n" ); document.write( "### Step 2: Apply Vertical Stretch\r
\n" ); document.write( "\n" ); document.write( "* **Vertical stretch by factor 7** means $a = 7$.\r
\n" ); document.write( "\n" ); document.write( "$$f(-5x) \to 7f(-5x) = 7 \left(\frac{1}{-5x}\right) = -\frac{7}{5x}$$\r
\n" ); document.write( "\n" ); document.write( "### Step 3: Apply Translations\r
\n" ); document.write( "\n" ); document.write( "* **Translation 10 units left** means $h = -10$. We replace $x$ with $(x - (-10)) = (x+10)$.
\n" ); document.write( "* **Translation 1 unit down** means $k = -1$.\r
\n" ); document.write( "\n" ); document.write( "Substitute $(x+10)$ for $x$ and add $k=-1$:
\n" ); document.write( "$$g(x) = -\frac{7}{5(x+10)} - 1$$\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "## The Final Equation $g(x)$\r
\n" ); document.write( "\n" ); document.write( "$$g(x) = -\frac{7}{5(x+10)} - 1$$\r
\n" ); document.write( "\n" ); document.write( "***\r
\n" ); document.write( "\n" ); document.write( "## b. State the Domain and Range of $g(x)$\r
\n" ); document.write( "\n" ); document.write( "The domain and range of a transformed function $g(x) = a \cdot f(b(x-h)) + k$ relate directly to the transformations applied to the parent function $f(x)$.\r
\n" ); document.write( "\n" ); document.write( "The parent function $f(x) = \frac{1}{x}$ has:
\n" ); document.write( "* Domain: $x \neq 0$ (Vertical Asymptote at $x=0$)
\n" ); document.write( "* Range: $y \neq 0$ (Horizontal Asymptote at $y=0$)\r
\n" ); document.write( "\n" ); document.write( "### Domain of $g(x)$\r
\n" ); document.write( "\n" ); document.write( "The domain is restricted by the **vertical asymptote**, which is shifted horizontally.
\n" ); document.write( "The vertical asymptote of $f(x)$ is $x=0$.
\n" ); document.write( "The only horizontal shift is **10 units left** ($h=-10$).
\n" ); document.write( "* New Vertical Asymptote: $x = 0 - 10 = -10$.
\n" ); document.write( "* The domain is all real numbers except $x=-10$.\r
\n" ); document.write( "\n" ); document.write( "$$\text{Domain of } g(x): \mathbf{\{x \in \mathbb{R} \mid x \neq -10\} \text{ or } (-\infty, -10) \cup (-10, \infty)}$$\r
\n" ); document.write( "\n" ); document.write( "### Range of $g(x)$\r
\n" ); document.write( "\n" ); document.write( "The range is restricted by the **horizontal asymptote**, which is shifted vertically.
\n" ); document.write( "The horizontal asymptote of $f(x)$ is $y=0$.
\n" ); document.write( "The only vertical shift is **1 unit down** ($k=-1$).
\n" ); document.write( "* New Horizontal Asymptote: $y = 0 - 1 = -1$.
\n" ); document.write( "* The range is all real numbers except $y=-1$.\r
\n" ); document.write( "\n" ); document.write( "$$\text{Range of } g(x): \mathbf{\{y \in \mathbb{R} \mid y \neq -1\} \text{ or } (-\infty, -1) \cup (-1, \infty)}$$
\n" ); document.write( "
\n" );