document.write( "Question 1165937: solve for the equation of the hyperbola in general form with directrices x=-5 and x=7, and one focus at (13,5). \n" ); document.write( "
Algebra.Com's Answer #852876 by CPhill(2138) You can put this solution on YOUR website! To find the equation of the hyperbola in general form, we first need to determine the **center**, the distance from the center to the **focus ($c$)**, and the distance from the center to the **directrix ($a/e$)**.\r \n" ); document.write( "\n" ); document.write( "Since the directrices are vertical lines ($x=-5$ and $x=7$), the hyperbola is **horizontal**, meaning its transverse axis is parallel to the $x$-axis.\r \n" ); document.write( "\n" ); document.write( "## 1. Determine Key Parameters\r \n" ); document.write( "\n" ); document.write( "### A. Center ($h, k$)\r \n" ); document.write( "\n" ); document.write( "The center ($h, k$) lies exactly halfway between the two directrices. Since the directrices are defined by $x=-5$ and $x=7$, the $x$-coordinate of the center ($h$) is their average. The focus given is $(13, 5)$, so the $y$-coordinate of the center ($k$) must be 5.\r \n" ); document.write( "\n" ); document.write( "$$h = \frac{-5 + 7}{2} = \frac{2}{2} = 1$$ \n" ); document.write( "$$\text{Center} (h, k) = \mathbf{(1, 5)}$$\r \n" ); document.write( "\n" ); document.write( "### B. Distance to Focus ($c$)\r \n" ); document.write( "\n" ); document.write( "The focus is at $(13, 5)$ and the center is at $(1, 5)$. The distance $c$ is the distance between them: \n" ); document.write( "$$c = 13 - 1 = \mathbf{12}$$\r \n" ); document.write( "\n" ); document.write( "### C. Distance between Directrices\r \n" ); document.write( "\n" ); document.write( "The distance between the directrices is $7 - (-5) = 12$. The general distance between the two directrices of a hyperbola is given by $2a/e$.\r \n" ); document.write( "\n" ); document.write( "$$2\frac{a}{e} = 12 \implies \frac{a}{e} = \mathbf{6} \quad \text{(Equation 1)}$$\r \n" ); document.write( "\n" ); document.write( "### D. Eccentricity ($e$) and Semi-transverse Axis ($a$)\r \n" ); document.write( "\n" ); document.write( "We use the relationship between $a, c,$ and the eccentricity $e$: \n" ); document.write( "$$c = a \cdot e$$ \n" ); document.write( "Substituting $c=12$: \n" ); document.write( "$$12 = a \cdot e \quad \text{(Equation 2)}$$\r \n" ); document.write( "\n" ); document.write( "Now, we solve the system of equations (1) and (2) for $a$ and $e$: \n" ); document.write( "1. $a = 6e$ (from Eq. 1) \n" ); document.write( "2. $12 = (6e)e$ (substitute into Eq. 2) \n" ); document.write( "$$12 = 6e^2$$ \n" ); document.write( "$$e^2 = 2 \implies e = \sqrt{2}$$\r \n" ); document.write( "\n" ); document.write( "Now find $a$: \n" ); document.write( "$$a = 6e = 6\sqrt{2}$$ \n" ); document.write( "$$a^2 = (6\sqrt{2})^2 = 36 \times 2 = \mathbf{72}$$\r \n" ); document.write( "\n" ); document.write( "### E. Semi-conjugate Axis ($b^2$)\r \n" ); document.write( "\n" ); document.write( "Use the standard hyperbolic relation $c^2 = a^2 + b^2$. \n" ); document.write( "$$12^2 = 72 + b^2$$ \n" ); document.write( "$$144 = 72 + b^2$$ \n" ); document.write( "$$b^2 = 144 - 72 = \mathbf{72}$$\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## 2. Standard Form of the Equation\r \n" ); document.write( "\n" ); document.write( "Since the hyperbola is horizontal, the standard form is: \n" ); document.write( "$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$ \n" ); document.write( "Substitute $h=1, k=5, a^2=72,$ and $b^2=72$:\r \n" ); document.write( "\n" ); document.write( "$$\frac{(x-1)^2}{72} - \frac{(y-5)^2}{72} = 1$$\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## 3. General Form of the Equation\r \n" ); document.write( "\n" ); document.write( "To convert to the general form ($Ax^2 + Bx + Cy^2 + Dy + E = 0$), multiply the entire equation by the common denominator, 72:\r \n" ); document.write( "\n" ); document.write( "$$72 \left( \frac{(x-1)^2}{72} - \frac{(y-5)^2}{72} \right) = 1 \times 72$$ \n" ); document.write( "$$(x-1)^2 - (y-5)^2 = 72$$\r \n" ); document.write( "\n" ); document.write( "Expand the squared terms: \n" ); document.write( "$$(x^2 - 2x + 1) - (y^2 - 10y + 25) = 72$$\r \n" ); document.write( "\n" ); document.write( "Remove parentheses and rearrange: \n" ); document.write( "$$x^2 - 2x + 1 - y^2 + 10y - 25 = 72$$ \n" ); document.write( "$$x^2 - y^2 - 2x + 10y - 24 = 72$$\r \n" ); document.write( "\n" ); document.write( "Move the constant term to the left side: \n" ); document.write( "$$x^2 - y^2 - 2x + 10y - 24 - 72 = 0$$ \n" ); document.write( "$$x^2 - y^2 - 2x + 10y - 96 = 0$$\r \n" ); document.write( "\n" ); document.write( "The equation of the hyperbola in general form is: \n" ); document.write( "$$\mathbf{x^2 - y^2 - 2x + 10y - 96 = 0}$$ \n" ); document.write( " |