document.write( "Question 1166052: Let ABCD be a parallelogram and P a point in its interior. Define points
\n" );
document.write( "Q, R and S such that A is the midpoint of PQ, B is the midpoint of QR
\n" );
document.write( "and C is the midpoint of RS. Prove that D is the midpoint of SP. \n" );
document.write( "
Algebra.Com's Answer #852869 by CPhill(2141) You can put this solution on YOUR website! This is a great problem that can be solved elegantly using **vector algebra**.\r \n" ); document.write( "\n" ); document.write( "## 📐 Proof using Vector Algebra\r \n" ); document.write( "\n" ); document.write( "Let the origin be $O$. We will represent the position of each point using its position vector (e.g., the position vector of point $A$ is $\vec{a}$).\r \n" ); document.write( "\n" ); document.write( "### 1. Parallelogram Property\r \n" ); document.write( "\n" ); document.write( "Since $ABCD$ is a parallelogram, the sum of vectors from opposite vertices is equal. \n" ); document.write( "$$\vec{d} - \vec{a} = \vec{c} - \vec{b}$$ \n" ); document.write( "Rearranging this gives the fundamental vector property of a parallelogram: \n" ); document.write( "$$\vec{a} + \vec{c} = \vec{b} + \vec{d} \quad \text{(Equation 1)}$$\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### 2. Midpoint Conditions\r \n" ); document.write( "\n" ); document.write( "The problem defines points $Q$, $R$, and $S$ based on midpoint conditions:\r \n" ); document.write( "\n" ); document.write( "* **A is the midpoint of PQ:** \n" ); document.write( " $$\vec{a} = \frac{\vec{p} + \vec{q}}{2} \implies \vec{q} = 2\vec{a} - \vec{p} \quad \text{(Equation 2)}$$ \n" ); document.write( "* **B is the midpoint of QR:** \n" ); document.write( " $$\vec{b} = \frac{\vec{q} + \vec{r}}{2} \implies \vec{r} = 2\vec{b} - \vec{q} \quad \text{(Equation 3)}$$ \n" ); document.write( "* **C is the midpoint of RS:** \n" ); document.write( " $$\vec{c} = \frac{\vec{r} + \vec{s}}{2} \implies \vec{s} = 2\vec{c} - \vec{r} \quad \text{(Equation 4)}$$\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### 3. Substitution and Simplification\r \n" ); document.write( "\n" ); document.write( "We will substitute Equation 2 into Equation 3, and then the result into Equation 4 to express $\vec{s}$ in terms of $\vec{a}$, $\vec{b}$, $\vec{c}$, and $\vec{p}$.\r \n" ); document.write( "\n" ); document.write( "**Substitute $\vec{q}$ (Eq. 2) into $\vec{r}$ (Eq. 3):** \n" ); document.write( "$$\vec{r} = 2\vec{b} - (2\vec{a} - \vec{p})$$ \n" ); document.write( "$$\vec{r} = 2\vec{b} - 2\vec{a} + \vec{p} \quad \text{(Equation 5)}$$\r \n" ); document.write( "\n" ); document.write( "**Substitute $\vec{r}$ (Eq. 5) into $\vec{s}$ (Eq. 4):** \n" ); document.write( "$$\vec{s} = 2\vec{c} - (2\vec{b} - 2\vec{a} + \vec{p})$$ \n" ); document.write( "$$\vec{s} = 2\vec{c} - 2\vec{b} + 2\vec{a} - \vec{p}$$ \n" ); document.write( "Group the vectors using the parallelogram property (Equation 1). \n" ); document.write( "$$\vec{s} = 2(\vec{a} + \vec{c}) - 2\vec{b} - \vec{p}$$\r \n" ); document.write( "\n" ); document.write( "**Now, substitute $\vec{a} + \vec{c} = \vec{b} + \vec{d}$ (from Eq. 1):** \n" ); document.write( "$$\vec{s} = 2(\vec{b} + \vec{d}) - 2\vec{b} - \vec{p}$$ \n" ); document.write( "$$\vec{s} = 2\vec{b} + 2\vec{d} - 2\vec{b} - \vec{p}$$\r \n" ); document.write( "\n" ); document.write( "The $2\vec{b}$ terms cancel out: \n" ); document.write( "$$\vec{s} = 2\vec{d} - \vec{p}$$\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### 4. Conclusion\r \n" ); document.write( "\n" ); document.write( "Rearrange the final expression to check the required midpoint condition: \n" ); document.write( "$$\vec{s} = 2\vec{d} - \vec{p}$$ \n" ); document.write( "$$\vec{s} + \vec{p} = 2\vec{d}$$ \n" ); document.write( "$$\vec{d} = \frac{\vec{p} + \vec{s}}{2}$$\r \n" ); document.write( "\n" ); document.write( "This is the definition of the midpoint of $SP$. Therefore, **$D$ is the midpoint of $SP$**. \n" ); document.write( " |