document.write( "Question 1210484: How would you graph y=-2/3+5 and -2x+4y=-8 with a point of (6,1)
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #852857 by CPhill(2138) You can put this solution on YOUR website! It looks like you want to **graph two lines** and determine if the point $(6, 1)$ lies on their intersection.\r \n" ); document.write( "\n" ); document.write( "The first equation, $y = -2/3 + 5$, is simply a horizontal line since it's a constant value. The second equation, $-2x + 4y = -8$, is a linear equation in standard form.\r \n" ); document.write( "\n" ); document.write( "Let's first clarify and re-write the equations for graphing.\r \n" ); document.write( "\n" ); document.write( "## 1. Analyze and Simplify the Equations\r \n" ); document.write( "\n" ); document.write( "### Equation 1: $y = -2/3 + 5$\r \n" ); document.write( "\n" ); document.write( "This equation simplifies to a single constant: \n" ); document.write( "$$y = -\frac{2}{3} + \frac{15}{3}$$ \n" ); document.write( "$$y = \frac{13}{3} \approx 4.33$$ \n" ); document.write( "This is a **horizontal line** where every point has a y-coordinate of $\frac{13}{3}$.\r \n" ); document.write( "\n" ); document.write( "### Equation 2: $-2x + 4y = -8$\r \n" ); document.write( "\n" ); document.write( "It's easiest to graph this line using the slope-intercept form ($y = mx + b$).\r \n" ); document.write( "\n" ); document.write( "1. **Isolate $y$:** \n" ); document.write( " $$4y = 2x - 8$$ \n" ); document.write( "2. **Divide by 4:** \n" ); document.write( " $$y = \frac{2}{4}x - \frac{8}{4}$$ \n" ); document.write( " $$y = \frac{1}{2}x - 2$$ \n" ); document.write( " This line has a **y-intercept ($b$) of $-2$** and a **slope ($m$) of $\frac{1}{2}$** (up 1, right 2).\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## 2. Graphing the Lines\r \n" ); document.write( "\n" ); document.write( "To graph these lines, you'll plot points and draw the lines on a coordinate plane.\r \n" ); document.write( "\n" ); document.write( "### Line 1: $y = \frac{13}{3}$\r \n" ); document.write( "\n" ); document.write( "1. **Plot the y-intercept:** $(\mathbf{0, \frac{13}{3}})$ or $(0, 4.33)$. \n" ); document.write( "2. **Draw a horizontal line** passing through that point. \n" ); document.write( " * Example points: $(3, \frac{13}{3})$, $(-3, \frac{13}{3})$.\r \n" ); document.write( "\n" ); document.write( "### Line 2: $y = \frac{1}{2}x - 2$\r \n" ); document.write( "\n" ); document.write( "1. **Plot the y-intercept:** $(\mathbf{0, -2})$. \n" ); document.write( "2. **Use the slope** ($m = \frac{1}{2}$) to find other points: \n" ); document.write( " * From $(0, -2)$, go up 1 and right 2 to find $(\mathbf{2, -1})$. \n" ); document.write( " * From $(2, -1)$, go up 1 and right 2 to find $(\mathbf{4, 0})$. \n" ); document.write( "3. **Draw a straight line** through these points.\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## 3. Check the Given Point $(6, 1)$\r \n" ); document.write( "\n" ); document.write( "Finally, let's see if the point $(6, 1)$ lies on **either** line.\r \n" ); document.write( "\n" ); document.write( "### Check Line 1: $y = \frac{13}{3}$ \n" ); document.write( "Substitute $y=1$: \n" ); document.write( "$$1 = \frac{13}{3}$$ \n" ); document.write( "This is **False**. The point $(6, 1)$ is **not** on Line 1.\r \n" ); document.write( "\n" ); document.write( "### Check Line 2: $y = \frac{1}{2}x - 2$ \n" ); document.write( "Substitute $x=6$ and $y=1$: \n" ); document.write( "$$1 = \frac{1}{2}(6) - 2$$ \n" ); document.write( "$$1 = 3 - 2$$ \n" ); document.write( "$$1 = 1$$ \n" ); document.write( "This is **True**. The point $(6, 1)$ **is** on Line 2.\r \n" ); document.write( "\n" ); document.write( "The point $(6, 1)$ is only on the line $y = \frac{1}{2}x - 2$.\r \n" ); document.write( "\n" ); document.write( "Would you like to find the exact point where these two lines intersect? \n" ); document.write( " |