document.write( "Question 1210474: In rectangle ABCD, corner A is folded over crease DE to point F on BC. Find BC. \n" ); document.write( "
Algebra.Com's Answer #852836 by ikleyn(53299)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "In rectangle ABCD, corner A is folded over crease DE to point F on BC. Find BC.
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Make a sketch following my descriptions/instructions.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "We consider rectangle ABCD.  For simplicity, assume that the rectangle is \"vertical\",\r\n" );
document.write( "i.e. its vertical dimension 'b' = AD = BC is greater than (or equal to) its horizontal dimension 'a' = AB = CD.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "We fold corner A, so point A comes to point F on BC: so, point F is the image of point A\r\n" );
document.write( "under folding, and F is on BC between points B and C.   <<<---===  It is in accordance with the given part.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then it is clear that at this folding the side AB transforms to interval BF;\r\n" );
document.write( "so, AB = BF = a.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It is also clear that at this folding the side AD becomes FD;  therefore, DF = b.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Consider right-angled triangle FCD. For its leg FC we can write\r\n" );
document.write( "\r\n" );
document.write( "    FC = \"sqrt%28DF%5E2+-+CD%5E2%29\" = \"sqrt%28b%5E2+-+a%5E2%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now interval BC is the sum of two intervals\r\n" );
document.write( "\r\n" );
document.write( "    BC = BF + FC = a + \"sqrt%28b%5E2-a%5E2%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "But BC = b; so, we can rewrite the last equation in the form\r\n" );
document.write( "\r\n" );
document.write( "    b = a + \"sqrt%28b%5E2-a%5E2%29\".    (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now we will perform formal transformations with this equation.  From (1) we have, moving 'a' on the left side\r\n" );
document.write( "\r\n" );
document.write( "    b - a = \"sqrt%28b%5E2-a%5E2%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Square both sides\r\n" );
document.write( "\r\n" );
document.write( "    (b-a)^2 = b^2 - a^2,\r\n" );
document.write( "\r\n" );
document.write( "    b^2 - 2ab + a^2 = b^2 - a^2\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Cancel b^2 in both sides and continue     \r\n" );
document.write( "\r\n" );
document.write( "    -2ab + a^2 = - a^2,\r\n" );
document.write( "\r\n" );
document.write( "     a^2 + a^2 = 2ab,\r\n" );
document.write( "\r\n" );
document.write( "     2a^2 = 2ab.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Cancel the common factor 2a in both sides\r\n" );
document.write( "\r\n" );
document.write( "    a = b.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, we proved that under given conditions, it must be a = b.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It is what the problem wants to be proved.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  Under given conditions, the rectangle ABCD is the square and its sides are congruent: a = b.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "It is what the Artificial Intelligence (= @CPhill) missed and could not to prove properly.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );