document.write( "Question 1210476: In the diagram, ABCD is a square with side length 2, and BEF is an equilateral triangle with side length 3. Find DF. \n" ); document.write( "
Algebra.Com's Answer #852832 by CPhill(2138)\"\" \"About 
You can put this solution on YOUR website!
The given information allows us to determine the exact angles between the sides of the square and the triangle:\r
\n" ); document.write( "\n" ); document.write( "* **Square ABCD** side length: $AB = BC = 2$.
\n" ); document.write( "* **Equilateral Triangle BEF** side length: $BE = BF = 3$.
\n" ); document.write( "* **Connecting Angle:** $\angle ABE = 30^\circ$.\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "## 1. Distance between A and F ($\mathbf{AF}$)\r
\n" ); document.write( "\n" ); document.write( "The distance $AF$ can be found by analyzing $\triangle ABF$.\r
\n" ); document.write( "\n" ); document.write( "### Finding Angle $\angle ABF$\r
\n" ); document.write( "\n" ); document.write( "The angle $\angle ABF$ is the sum of the angle $\angle ABE$ and the angle $\angle EBF$, assuming the triangle is positioned sequentially adjacent to $AB$:
\n" ); document.write( "$$\angle ABF = \angle ABE + \angle EBF$$
\n" ); document.write( "* $\angle ABE = 30^\circ$ (Given)
\n" ); document.write( "* $\angle EBF = 60^\circ$ (Angle of an equilateral triangle)\r
\n" ); document.write( "\n" ); document.write( "$$\angle ABF = 30^\circ + 60^\circ = 90^\circ$$\r
\n" ); document.write( "\n" ); document.write( "Since $\angle ABF = 90^\circ$, $\triangle ABF$ is a **right-angled triangle**.\r
\n" ); document.write( "\n" ); document.write( "### Using the Pythagorean Theorem\r
\n" ); document.write( "\n" ); document.write( "We use the Pythagorean theorem: $AF^2 = AB^2 + BF^2$.\r
\n" ); document.write( "\n" ); document.write( "$$AF^2 = 2^2 + 3^2$$
\n" ); document.write( "$$AF^2 = 4 + 9$$
\n" ); document.write( "$$AF^2 = 13$$
\n" ); document.write( "$$AF = \mathbf{\sqrt{13}}$$\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "## 2. Distance between C and F ($\mathbf{CF}$)\r
\n" ); document.write( "\n" ); document.write( "The distance $CF$ can be found by analyzing $\triangle CBF$.\r
\n" ); document.write( "\n" ); document.write( "### Finding Angle $\angle CBF$\r
\n" ); document.write( "\n" ); document.write( "First, we find $\angle EBC$, assuming $E$ is *inside* the $\angle ABC$ corner:
\n" ); document.write( "$$\angle EBC = \angle ABC - \angle ABE$$
\n" ); document.write( "* $\angle ABC = 90^\circ$ (Angle of a square)
\n" ); document.write( "* $\angle ABE = 30^\circ$ (Given)\r
\n" ); document.write( "\n" ); document.write( "$$\angle EBC = 90^\circ - 30^\circ = 60^\circ$$\r
\n" ); document.write( "\n" ); document.write( "For $\angle CBF$, we assume the points $C, E, F$ are positioned such that $\angle CBF = \angle EBC + \angle EBF$ (a typical non-collinear configuration).
\n" ); document.write( "$$\angle CBF = \angle EBC + \angle EBF$$
\n" ); document.write( "$$\angle CBF = 60^\circ + 60^\circ = 120^\circ$$\r
\n" ); document.write( "\n" ); document.write( "### Using the Law of Cosines\r
\n" ); document.write( "\n" ); document.write( "We use the Law of Cosines: $CF^2 = CB^2 + BF^2 - 2(CB)(BF) \cos(\angle CBF)$.\r
\n" ); document.write( "\n" ); document.write( "$$CF^2 = 2^2 + 3^2 - 2(2)(3) \cos(120^\circ)$$
\n" ); document.write( "$$CF^2 = 4 + 9 - 12 \left(-\frac{1}{2}\right)$$
\n" ); document.write( "$$CF^2 = 13 - (-6)$$
\n" ); document.write( "$$CF^2 = 19$$
\n" ); document.write( "$$CF = \mathbf{\sqrt{19}}$$\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "Given that $\angle ABF=90^\circ$ simplifies the calculation significantly, it is highly likely that the intended question was to find $AF$.\r
\n" ); document.write( "\n" ); document.write( "The answer is:
\n" ); document.write( "* The distance **$AF$** is **$\sqrt{13}$**.
\n" ); document.write( "* The distance **$CF$** is **$\sqrt{19}$**.
\n" ); document.write( "
\n" );